机器学习实例(预测房价中位数)(附代码)

前提条件:

1、有一些python编程经验。
2、熟悉python主要科学库,特别是:numpy,pandas和matplotlib。
3、最好使用Jupyter 编程。(没有的话,建议下载Anaconda。里面有。)

一、下载数据:

1、 下载一个压缩文件housing.tgz即可,其包含housing.csv(已经包含书有数据。),用 tax xzf housing.tgz 来解压提取CSV文件。

import os
import tarfile
import urllib.request

DOWNLOAD_ROOT = "https://raw.githubusercontent.com/ageron/handson-ml2/master/"
HOUSING_PATH = os.path.join("datasets", "housing")
HOUSING_URL = DOWNLOAD_ROOT + "datasets/housing/housing.tgz"

def fetch_housing_data(housing_url=HOUSING_URL, housing_path=HOUSING_PATH):
    if not os.path.isdir(housing_path):
        os.makedirs(housing_path)
    tgz_path = os.path.join(housing_path, "housing.tgz")
    urllib.request.urlretrieve(housing_url, tgz_path)
    housing_tgz = tarfile.open(tgz_path)
    housing_tgz.extractall(path=housing_path)
    housing_tgz.close()

之后应用函数就好了。 Jupyter 最好用谷歌浏览器,搞不好会报错(没有网站访问权限)。

fetch_housing_data()

2、使用pandas加载数据,返回包含所用数据的DF 对象。

import pandas as pd

def load_housing_data(housing_path=HOUSING_PATH):
    csv_path=os.path.join(housing_path,"housing.csv")
    return pd.read_csv(csv_path)
load_housing_data(HOUSING_PATH)

查看数据结构:


housing = load_housing_data()
housing.head()
housing.info()

housing.describe()

%matplotlib inline
import matplotlib.pyplot as plt

housing.hist(bins=50,figsize=(20,15))
plt.show()

3、创建测试集(一般为数据集的百分之20,数据集越大,比例越小。)


import numpy as np
np.random.seed(42)

def split_train_test(data, test_ratio):
    shuffled_indices = np.random.permutation(len(data))
    test_set_size = int(len(data) * test_ratio)
    test_indices = shuffled_indices[:test_set_size]
    train_indices = shuffled_indices[test_set_size:]
    return data.iloc[train_indices], data.iloc[test_indices]
train_set, test_set = split_train_test(housing, 0.2)
len(train_set)
len(test_set)

from zlib import crc32

def test_set_check(identifier, test_ratio):
    return crc32(np.int64(identifier)) & 0xffffffff < test_ratio * 2**32

def split_train_test_by_id(data, test_ratio, id_column):
    ids = data[id_column]
    in_test_set = ids.apply(lambda id_: test_set_check(id_, test_ratio))
    return data.loc[~in_test_set], data.loc[in_test_set]
import hashlib

def test_set_check(identifier, test_ratio, hash=hashlib.md5):
    return hash(np.int64(identifier)).digest()[-1] < 256 * test_ratio

def test_set_check(identifier, test_ratio, hash=hashlib.md5):
    return bytearray(hash(np.int64(identifier)).digest())[-1] < 256 * test_ratio

housing_with_id = housing.reset_index()
train_set, test_set = split_train_test_by_id(housing_with_id, 0.2, "index")

housing_with_id["id"] = housing["longitude"] * 1000 + housing["latitude"]
train_set, test_set = split_train_test_by_id(housing_with_id, 0.2, "id")

test_set.head()

4、用Scikit-Learn 随机拆分 和 分层抽样出的数据测试集:


from sklearn.model_selection import train_test_split

train_set, test_set = train_test_split(housing, test_size=0.2, random_state=42)

test_set.head()
housing["median_income"].hist()
housing["income_cat"] = pd.cut(housing["median_income"],
                               bins=[0., 1.5, 3.0, 4.5, 6., np.inf],
                               labels=[1, 2, 3, 4, 5])

housing["income_cat"].value_counts()
housing["income_cat"].hist()

from sklearn.model_selection import StratifiedShuffleSplit

split = StratifiedShuffleSplit(n_splits=1, test_size=0.2, random_state=42)
for train_index, test_index in split.split(housing, housing["income_cat"]):
    strat_train_set = housing.loc[train_index]
    strat_test_set = housing.loc[test_index]

strat_test_set["income_cat"].value_counts() / len(strat_test_set)
housing["income_cat"].value_counts() / len(housing)

5、接下来对三种测试集进行比较。

def income_cat_proportions(data):
    return data["income_cat"].value_counts() / len(data)

train_set, test_set = train_test_split(housing, test_size=0.2, random_state=42)

compare_props = pd.DataFrame({
    "Overall": income_cat_proportions(housing),
    "Stratified": income_cat_proportions(strat_test_set),
    "Random": income_cat_proportions(test_set),
}).sort_index()
compare_props["Rand. %error"] = 100 * compare_props["Random"] / compare_props["Overall"] - 100
compare_props["Strat. %error"] = 100 * compare_props["Stratified"] / compare_props["Overall"] - 100
compare_props

得到结果之后,只有随机的会有一定的偏差。我们可以将其删除,使数据恢复原样:

for set_ in (strat_train_set, strat_test_set):
    set_.drop("income_cat", axis=1, inplace=True)

**二、数据探索

前提(为了不损坏数据,copy一下吧。)**

housing = strat_train_set.copy()

1、将地理数据可视化:


housing.plot(kind="scatter", x="longitude", y="latitude")

housing.plot(kind="scatter",x="longitude",y="latitude",alpha=0.1)

housing.plot(kind="scatter", x="longitude", y="latitude", alpha=0.4,
             s=housing["population"]/100, label="population", figsize=(10,7),
             c="median_house_value", cmap=plt.get_cmap("jet"), colorbar=True,
             sharex=False)
plt.legend()

2、寻找相关性:


corr_matrix = housing.corr()

corr_matrix["median_house_value"].sort_values(ascending=False)

from pandas.plotting import scatter_matrix

attributes = ["median_house_value", "median_income", "total_rooms",
              "housing_median_age"]
scatter_matrix(housing[attributes], figsize=(12, 8))

housing.plot(kind="scatter", x="median_income", y="median_house_value",
             alpha=0.1)
plt.axis([0, 16, 0, 550000])
save_fig("income_vs_house_value_scatterplot")

3、试验不同属性的组合(特征提取):


housing["rooms_per_household"] = housing["total_rooms"]/housing["households"]
housing["bedrooms_per_room"] = housing["total_bedrooms"]/housing["total_rooms"]
housing["population_per_household"]=housing["population"]/housing["households"]

corr_matrix = housing.corr()
corr_matrix["median_house_value"].sort_values(ascending=False)

housing.plot(kind="scatter", x="rooms_per_household", y="median_house_value",
             alpha=0.2)
plt.axis([0, 5, 0, 520000])
plt.show()
housing.describe()

三、数据准备

先回到一个干净的训练集(copy())^ ^

housing = strat_train_set.drop("median_house_value", axis=1)
housing_labels = strat_train_set["median_house_value"].copy()

1、数据清理(对残缺的数据,我进行的是补充完整训练数据的中位数。):


sample_incomplete_rows = housing[housing.isnull().any(axis=1)].head()
sample_incomplete_rows
median = housing["total_bedrooms"].median()
sample_incomplete_rows["total_bedrooms"].fillna(median, inplace=True)
sample_incomplete_rows

2、Scikit-Learn的设计:


from sklearn.impute import SimpleImputer
imputer = SimpleImputer(strategy="median")
housing_num = housing.drop("ocean_proximity", axis=1)
imputer.fit(housing_num)
imputer.statistics_
housing_num.median().values
X = imputer.transform(housing_num)
housing_tr = pd.DataFrame(X, columns=housing_num.columns ,index=housing_num.index )
housing_tr.loc[sample_incomplete_rows.index.values]
imputer.strategy
housing_tr = pd.DataFrame(X, columns=housing_num.columns,
                          index=housing_num.index)

housing_tr.head()

3、处理文本和分类属性:
前面我们只处理了数值属性。现在看一下文本属性。

housing_cat = housing[["ocean_proximity"]]
housing_cat.head(10)

from sklearn.preprocessing import OrdinalEncoder
ordinal_encoder =OrdinalEncoder()
housing_cat_encoded = ordinal_encoder.fit_transform(housing_cat)
housing_cat_encoded[:10]

ordinal_encoder.categories_

from sklearn.preprocessing import OneHotEncoder
cat_encoder = OneHotEncoder()
housing_cat_1hot = cat_encoder.fit_transform(housing_cat)
housing_cat_1hot

housing_cat_1hot.toarray()

cat_encoder.categories_

4、自定义转换器


from sklearn.base import BaseEstimator,TransformerMixin
rooms_ix , bedrooms_ix, population_ix , households_ix =3,4,5,6
class  CombinedAttributesAdder(BaseEstimator, TransformerMixin ):
    def __init__ (self, add_bedrooms_per_room = True):
        self.add_bedrooms_per_room=add_bedrooms_per_room
    def fit(self,X, y = None):
        return self
    def transform(self , X):
        rooms_per_household = X [: , rooms_ix] / X[:,households_ix]
        population_per_household = X[:,population_ix] / X [:, households_ix]
        if self.add_bedrooms_per_room:
            bedrooms_per_room = X[:,bedrooms_ix] / X[:,rooms_ix]
            return np.c_[X,rooms_per_household , population_per_household,bedrooms_per_room ]
        else:
            return np.c_[X,rooms_per_household, population_per_household ]
attr_adder = CombinedAttributesAdder(add_bedrooms_per_room= False)
housing_extra_attribs= attr_adder.transform(housing.values)

5、特征缩放:

col_names = "total_rooms", "total_bedrooms", "population", "households"
rooms_ix, bedrooms_ix, population_ix, households_ix = [
    housing.columns.get_loc(c) for c in col_names]

housing_extra_attribs = pd.DataFrame(
    housing_extra_attribs,
    columns=list(housing.columns)+["rooms_per_household", "population_per_household"],
    index=housing.index)
housing_extra_attribs.head()

6、转换流水线:
(数据的转换需要正确的顺序来执行)

from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler

num_pipeline = Pipeline([
        ('imputer', SimpleImputer(strategy="median")),
        ('attribs_adder', CombinedAttributesAdder()),
        ('std_scaler', StandardScaler()),
    ])

housing_num_tr = num_pipeline.fit_transform(housing_num)

from sklearn.compose import ColumnTransformer

num_attribs = list(housing_num)
cat_attribs = ["ocean_proximity"]

full_pipeline = ColumnTransformer([
    ("num",num_pipeline , num_attribs ),
    ("cat" , OneHotEncoder(),cat_attribs ),
])
housing_prepared = full_pipeline.fit_transform(housing)

housing_prepared
housing_prepared.shape

四、选择和训练模型

开始准备机器学习算法:
一共训练了线性回归模型,决策树和随机森林。训练之后用测试集评估看那个泛化效果更好。
1、训练和评估训练集:


from sklearn.linear_model import LinearRegression

lin_reg = LinearRegression()
lin_reg.fit(housing_prepared,housing_labels)

some_data =housing.iloc[:5]
some_labels = housing_labels.iloc[: 5]
some_data_prepared = full_pipeline.transform(some_data)
print("Predictions:",lin_reg.predict(some_data_prepared))

from sklearn.metrics import mean_squared_error
housing_predictions = lin_reg.predict(housing_prepared)
lin_mse  = mean_squared_error(housing_labels, housing_predictions)
lin_rmse = np.sqrt(lin_mse)
lin_rmse

但是这个结果也并不是太好看(68628.198)有点大。让我们再看一下决策树:

from sklearn.tree  import DecisionTreeRegressor

tree_reg = DecisionTreeRegressor()
tree_reg.fit(housing_prepared, housing_labels)
housing_predictions = tree_reg.predict(housing_prepared)
tree_mse = mean_squared_error(housing_labels,housing_predictions)
tree_rmse = np.sqrt(tree_mse)
tree_rmse

结果为(0.0) 大概严重过拟合了。

2、交叉验证更好的评估:


from sklearn.model_selection import cross_val_score
scores = cross_val_score(tree_reg,housing_prepared , housing_labels ,
                        scoring="neg_mean_squared_error", cv=10)
tree_rmse_scores = np.sqrt(-scores)

def display_scores(scores):
    print("Scores:",scores)
    print("Mean:", scores.mean())
    print("Standard deviation:", scores.std())

display_scores(tree_rmse_scores)

lin_scores = cross_val_score(lin_reg, housing_prepared, housing_labels,
                             scoring="neg_mean_squared_error", cv=10)
lin_rmse_scores = np.sqrt(-lin_scores)
display_scores(lin_rmse_scores)

之后你会发现,决策树确实是过拟合了,而且表现比线性回归还有糟糕。让我们再试试随机森林:


from sklearn.ensemble import RandomForestRegressor
forest_reg = RandomForestRegressor()
forest_reg.fit(housing_prepared,housing_labels)

housing_predictions = forest_reg.predict(housing_prepared)
forest_mse = mean_squared_error(housing_labels, housing_predictions)
forest_rmse = np.sqrt(forest_mse)
forest_rmse

from sklearn.model_selection import cross_val_score

forest_scores = cross_val_score(forest_reg, housing_prepared, housing_labels,
                                scoring="neg_mean_squared_error", cv=10)
forest_rmse_scores = np.sqrt(-forest_scores)
display_scores(forest_rmse_scores)

五、微调模型:

1、网格搜索:
调整超参数:


from sklearn.model_selection import GridSearchCV

param_grid = [

    {'n_estimators': [3, 10, 30], 'max_features': [2, 4, 6, 8]},

    {'bootstrap': [False], 'n_estimators': [3, 10], 'max_features': [2, 3, 4]},
  ]

forest_reg = RandomForestRegressor(random_state=42)

grid_search = GridSearchCV(forest_reg, param_grid, cv=5,
                           scoring='neg_mean_squared_error',
                           return_train_score=True)
grid_search.fit(housing_prepared, housing_labels)

grid_search.best_params_

grid_search.best_estimator_

cvres = grid_search.cv_results_
for mean_score ,params in zip(cvres["mean_test_score"],cvres["params"]):
    print(np.sqrt(-mean_score),params)

2、随机搜索:(适合那种超参数比较大范围的)。


from sklearn.model_selection import RandomizedSearchCV
from scipy.stats import randint

param_distribs = {
        'n_estimators': randint(low=1, high=200),
        'max_features': randint(low=1, high=8),
    }

forest_reg = RandomForestRegressor(random_state=42)
rnd_search = RandomizedSearchCV(forest_reg, param_distributions=param_distribs,
                                n_iter=10, cv=5, scoring='neg_mean_squared_error', random_state=42)
rnd_search.fit(housing_prepared, housing_labels)

rnd_search.best_params_

cvres = rnd_search.cv_results_
for mean_score, params in zip(cvres["mean_test_score"], cvres["params"]):
    print(np.sqrt(-mean_score), params)

3、分析最佳模型及其误差:

feature_importances = grid_search.best_estimator_.feature_importances_
feature_importances

将重要性分数显示在对应属性旁边:

extra_attribs = ["rooms_per_hhold", "pop_per_hhold", "bedrooms_per_room"]

cat_encoder = full_pipeline.named_transformers_["cat"]
cat_one_hot_attribs = list(cat_encoder.categories_[0])
attributes = num_attribs + extra_attribs + cat_one_hot_attribs
sorted(zip(feature_importances, attributes), reverse=True)

4、通过测试集评估系统:
到现在,我们终于有了一个还不错的系统。来让我们进行最后的评估,成败在此一举。
评估最终模型


final_model = grid_search.best_estimator_

x_test = strat_test_set.drop("median_house_value", axis=1)
y_test = strat_test_set["median_house_value"].copy()

x_test_prepared = full_pipeline.transform(x_test)
final_predictions = final_model.predict(x_test_prepared)

final_mse = mean_squared_error(y_test , final_predictions)
final_rmse =  np.sqrt(final_mse)

final_rmse

结果还不错,但是存在的泛化误差的危害性还是比较大的。
为此计算泛化误差的0.95置信区间:

from scipy import stats

confidence = 0.95
squared_errors = (final_predictions - y_test) ** 2
np.sqrt(stats.t.interval(confidence, len(squared_errors) - 1,
                         loc=squared_errors.mean(),
                         scale=stats.sem(squared_errors)))

六、启动!!


full_pipeline_with_predictor = Pipeline([
        ("preparation", full_pipeline),
        ("linear", LinearRegression())
    ])

full_pipeline_with_predictor.fit(housing, housing_labels)
full_pipeline_with_predictor.predict(some_data)

保存训练好的模型,以后还能用。^^


my_model = full_pipeline_with_predictor
import joblib
joblib.dump(my_model, "my_model.pkl")

my_model_loaded = joblib.load("my_model.pkl")

结束语:

我是跟着一本《机器学习实战》学习的,以上基本上是上面的内容。以下会提及。
鄙人不才,分析不是很全面,如有一些错误,请评论指正,感谢!
完整代码: 这个是我敲的
或者:原作者敲的
最后:
Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd Edition, 作者: Aurelien Geron(法语) , 又 O Reilly 出版, 书号 978-1-492-03264-9。
建议买一本,很不错。🆗

Original: https://blog.csdn.net/qq_51153436/article/details/121527662
Author: 看到我你要笑一下
Title: 机器学习实例(预测房价中位数)(附代码)

原创文章受到原创版权保护。转载请注明出处:https://www.johngo689.com/630567/

转载文章受原作者版权保护。转载请注明原作者出处!

(0)

大家都在看

亲爱的 Coder【最近整理,可免费获取】👉 最新必读书单  | 👏 面试题下载  | 🌎 免费的AI知识星球