Transformer代码解读(Pytorch)

文章目录

Transformer代码解读(Pytorch)

Transformer代码解读(Pytorch)

; 一、 词嵌入

如上图所示,Transformer图里左边的是Encoder,右边是Decoder部分。Encoder输入源语言序列,Decoder里面输入需要被翻译的语言文本(在训练时)。一个文本常有许多序列组成,常见操作为将序列进行一些预处理(如词切分等)变成列表,一个序列的列表的元素通常为词表中不可切分的最小词,整个文本就是一个大列表,元素为一个一个由序列组成的列表。如一个序列经过切分后变为[“am”, “##ro”, “##zi”, “meets”, “his”, “father”],接下来按照它们在词表中对应的索引进行转换,假设结果如[23, 94, 13, 41, 27, 96]。假如整个文本一共100个句子,那么就有100个列表为它的元素,因为每个序列的长度不一,需要设定最大长度,这里不妨设为128,那么将整个文本转换为数组之后,形状即为100 x 128,这就对应着batch_size和seq_length。

输入之后,紧接着进行词嵌入处理,词嵌入就是将每一个词用预先训练好的向量进行映射。

词嵌入在torch里基于 torch.nn.Embedding实现,实例化时需要设置的参数为词表的大小和被映射的向量的维度比如 embed = nn.Embedding(10,8)。向量的维度通俗来说就是向量里面有多少个数。注意,第一个参数是词表的大小,如果你目前最多有8个词,通常填写10(多一个位置留给unk和pad),你后面万一进入与这8个词不同的词就映射到unk上,序列padding的部分就映射到pad上。

假如我们打算映射到8维(num_features或者embed_dim),那么,整个文本的形状变为100 x 128 x 8。接下来举个小例子解释一下:假设我们词表一共有10个词(算上unk和pad),文本里有2个句子,每个句子有4个词,我们想要把每个词映射到8维的向量。于是2,4,8对应于batch_size, seq_length, embed_dim(如果batch在第一维的话)。

另外,一般深度学习任务只改变num_features,所以讲维度一般是针对最后特征所在的维度。下面开始代码部分:


import torch
import torch.nn as nn
from torch.nn.parameter import Parameter
from torch.nn.init import xavier_uniform_
from torch.nn.init import constant_
from torch.nn.init import xavier_normal_
import torch.nn.functional as F
from typing import Optional, Tuple, Any
from typing import List, Optional, Tuple
import math
import warnings
X = torch.zeros((2,4),dtype=torch.long)
embed = nn.Embedding(10,8)
print(embed(X).shape)

二、位置编码

词嵌入之后紧接着就是位置编码,位置编码用以区分不同词以及同词不同特征之间的关系。代码中需要注意:X_只是初始化的矩阵,并不是输入进来的;完成位置编码之后会加一个dropout。另外,位置编码是最后加上去的,因此输入输出形状不变。

Tensor = torch.Tensor
def positional_encoding(X, num_features, dropout_p=0.1, max_len=512) -> Tensor:
    r'''
        给输入加入位置编码
    参数:
        - num_features: 输入进来的维度
        - dropout_p: dropout的概率,当其为非零时执行dropout
        - max_len: 句子的最大长度,默认512

    形状:
        - 输入: [batch_size, seq_length, num_features]
        - 输出: [batch_size, seq_length, num_features]

    例子:
        >>> X = torch.randn((2,4,10))
        >>> X = positional_encoding(X, 10)
        >>> print(X.shape)
        >>> torch.Size([2, 4, 10])
    '''

    dropout = nn.Dropout(dropout_p)
    P = torch.zeros((1,max_len,num_features))
    X_ = torch.arange(max_len,dtype=torch.float32).reshape(-1,1) / torch.pow(
        10000,
        torch.arange(0,num_features,2,dtype=torch.float32) /num_features)
    P[:,:,0::2] = torch.sin(X_)
    P[:,:,1::2] = torch.cos(X_)
    X = X + P[:,:X.shape[1],:].to(X.device)
    return dropout(X)

X = torch.randn((2,4,10))
X = positional_encoding(X, 10)
print(X.shape)

三、 多头注意力机制

先拆开看多头注意力机制的各个部分,主要是参数初始化、multi_head_attention_forward。

3.1 初始化参数

if self._qkv_same_embed_dim is False:

    self.q_proj_weight = Parameter(torch.empty((embed_dim, embed_dim)))
    self.k_proj_weight = Parameter(torch.empty((embed_dim, self.kdim)))
    self.v_proj_weight = Parameter(torch.empty((embed_dim, self.vdim)))
    self.register_parameter('in_proj_weight', None)
else:
    self.in_proj_weight = Parameter(torch.empty((3 * embed_dim, embed_dim)))
    self.register_parameter('q_proj_weight', None)
    self.register_parameter('k_proj_weight', None)
    self.register_parameter('v_proj_weight', None)

if bias:
    self.in_proj_bias = Parameter(torch.empty(3 * embed_dim))
else:
    self.register_parameter('in_proj_bias', None)

self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self._reset_parameters()

torch.empty是按照所给的形状形成对应的tensor,特点是填充的值还未初始化,类比 torch.randn(标准正态分布),这就是一种初始化的方式。在PyTorch中,变量类型是tensor的话是无法修改值的,而Parameter()函数可以看作为一种类型转变函数,将不可改值的tensor转换为可训练可修改的模型参数,即与 model.parameters绑定在一起, register_parameter的意思是是否将这个参数放到model.parameters,None的意思是没有这个参数。

这里有个if判断,用以判断q,k,v的最后一维是否一致,若一致,则一个大的权重矩阵全部乘然后分割出来,若不是,则各初始化各的,其实初始化是不会改变原来的形状的(如

Transformer代码解读(Pytorch),见注释)。

可以发现最后有一个 _reset_parameters()函数,这个是用来初始化参数数值的。初始化函数有两个:

  • xavier_uniform:从连续型均匀分布里面随机取样出值来作为初始化的值
  • xavier_normal_:正态分布采样。 constant_意思是用所给值来填充输入的向量。

另外,在PyTorch的源码里,似乎projection代表是一种线性变换的意思, in_proj_bias的意思就是一开始的线性变换的偏置

def _reset_parameters(self):
    if self._qkv_same_embed_dim:
        xavier_uniform_(self.in_proj_weight)
    else:
        xavier_uniform_(self.q_proj_weight)
        xavier_uniform_(self.k_proj_weight)
        xavier_uniform_(self.v_proj_weight)
    if self.in_proj_bias is not None:
        constant_(self.in_proj_bias, 0.)
        constant_(self.out_proj.bias, 0.)

3.2 前向传播

multi_head_attention_forward函数如下代码所示,主要分成3个部分:

  • query, key, value通过 _in_projection_packed变换得到q,k,v
  • 遮挡机制
  • 点积注意力

3.2.1 矩阵变换

import torch
Tensor = torch.Tensor
def multi_head_attention_forward(
    query: Tensor,
    key: Tensor,
    value: Tensor,
    num_heads: int,
    in_proj_weight: Tensor,
    in_proj_bias: Optional[Tensor],
    dropout_p: float,
    out_proj_weight: Tensor,
    out_proj_bias: Optional[Tensor],
    training: bool = True,
    key_padding_mask: Optional[Tensor] = None,
    need_weights: bool = True,
    attn_mask: Optional[Tensor] = None,
    use_seperate_proj_weight = None,
    q_proj_weight: Optional[Tensor] = None,
    k_proj_weight: Optional[Tensor] = None,
    v_proj_weight: Optional[Tensor] = None,
) -> Tuple[Tensor, Optional[Tensor]]:
    r'''
    形状:
        输入:
        - query:(L, N, E)
        - key: (S, N, E)
        - value: (S, N, E)
        - key_padding_mask: (N, S)
        - attn_mask: (L, S) or (N * num_heads, L, S)
        输出:
        - attn_output:(L, N, E)
        - attn_output_weights:(N, L, S)
    '''
    tgt_len, bsz, embed_dim = query.shape
    src_len, _, _ = key.shape
    head_dim = embed_dim // num_heads
    q, k, v = _in_projection_packed(query, key, value, in_proj_weight, in_proj_bias)

    if attn_mask is not None:
        if attn_mask.dtype == torch.uint8:
            warnings.warn("Byte tensor for attn_mask in nn.MultiheadAttention is deprecated. Use bool tensor instead.")
            attn_mask = attn_mask.to(torch.bool)
        else:
            assert attn_mask.is_floating_point() or attn_mask.dtype == torch.bool, \
                f"Only float, byte, and bool types are supported for attn_mask, not {attn_mask.dtype}"

        if attn_mask.dim() == 2:
            correct_2d_size = (tgt_len, src_len)
            if attn_mask.shape != correct_2d_size:
                raise RuntimeError(f"The shape of the 2D attn_mask is {attn_mask.shape}, but should be {correct_2d_size}.")
            attn_mask = attn_mask.unsqueeze(0)
        elif attn_mask.dim() == 3:
            correct_3d_size = (bsz * num_heads, tgt_len, src_len)
            if attn_mask.shape != correct_3d_size:
                raise RuntimeError(f"The shape of the 3D attn_mask is {attn_mask.shape}, but should be {correct_3d_size}.")
        else:
            raise RuntimeError(f"attn_mask's dimension {attn_mask.dim()} is not supported")

    if key_padding_mask is not None and key_padding_mask.dtype == torch.uint8:
        warnings.warn("Byte tensor for key_padding_mask in nn.MultiheadAttention is deprecated. Use bool tensor instead.")
        key_padding_mask = key_padding_mask.to(torch.bool)

    q = q.contiguous().view(tgt_len, bsz * num_heads, head_dim).transpose(0, 1)
    k = k.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1)
    v = v.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1)
    if key_padding_mask is not None:
        assert key_padding_mask.shape == (bsz, src_len), \
            f"expecting key_padding_mask shape of {(bsz, src_len)}, but got {key_padding_mask.shape}"
        key_padding_mask = key_padding_mask.view(bsz, 1, 1, src_len).   \
            expand(-1, num_heads, -1, -1).reshape(bsz * num_heads, 1, src_len)
        if attn_mask is None:
            attn_mask = key_padding_mask
        elif attn_mask.dtype == torch.bool:
            attn_mask = attn_mask.logical_or(key_padding_mask)
        else:
            attn_mask = attn_mask.masked_fill(key_padding_mask, float("-inf"))

    if attn_mask is not None and attn_mask.dtype == torch.bool:
        new_attn_mask = torch.zeros_like(attn_mask, dtype=torch.float)
        new_attn_mask.masked_fill_(attn_mask, float("-inf"))
        attn_mask = new_attn_mask

    if not training:
        dropout_p = 0.0
    attn_output, attn_output_weights = _scaled_dot_product_attention(q, k, v, attn_mask, dropout_p)
    attn_output = attn_output.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim)
    attn_output = nn.functional.linear(attn_output, out_proj_weight, out_proj_bias)
    if need_weights:

        attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len)
        return attn_output, attn_output_weights.sum(dim=1) / num_heads
    else:
        return attn_output, None

query, key, value通过_in_projection_packed变换得到q,k,v

q, k, v = _in_projection_packed(query, key, value, in_proj_weight, in_proj_bias)

对于 nn.functional.linear函数,其实就是一个线性变换,与 nn.Linear不同的是,前者可以提供权重矩阵和偏置,执行

Transformer代码解读(Pytorch),而后者是可以自由决定输出的维度。
def _in_projection_packed(
    q: Tensor,
    k: Tensor,
    v: Tensor,
    w: Tensor,
    b: Optional[Tensor] = None,
) -> List[Tensor]:
    r"""
    用一个大的权重参数矩阵进行线性变换

    参数:
        q, k, v: 对自注意来说,三者都是src;对于seq2seq模型,k和v是一致的tensor。
                 但它们的最后一维(num_features或者叫做embed_dim)都必须保持一致。
        w: 用以线性变换的大矩阵,按照q,k,v的顺序压在一个tensor里面。
        b: 用以线性变换的偏置,按照q,k,v的顺序压在一个tensor里面。

    形状:
        输入:
        - q: shape:(..., E),E是词嵌入的维度(下面出现的E均为此意)。
        - k: shape:(..., E)
        - v: shape:(..., E)
        - w: shape:(E * 3, E)
        - b: shape:E * 3

        输出:
        - 输出列表 :[q', k', v'],q,k,v经过线性变换前后的形状都一致。
"""
    E = q.size(-1)

    if k is v:
        if q is k:
            return F.linear(q, w, b).chunk(3, dim=-1)
        else:

            w_q, w_kv = w.split([E, E * 2])
            if b is None:
                b_q = b_kv = None
            else:
                b_q, b_kv = b.split([E, E * 2])
            return (F.linear(q, w_q, b_q),) + F.linear(k, w_kv, b_kv).chunk(2, dim=-1)
    else:
        w_q, w_k, w_v = w.chunk(3)
        if b is None:
            b_q = b_k = b_v = None
        else:
            b_q, b_k, b_v = b.chunk(3)
        return F.linear(q, w_q, b_q), F.linear(k, w_k, b_k), F.linear(v, w_v, b_v)

3.2.2 遮挡机制

对于attn_mask来说,若为2D,形状如 (L, S),L和S分别代表着目标语言和源语言序列长度,若为3D,形状如 (N * num_heads, L, S),N代表着batch_size,num_heads代表注意力头的数目。若为attn_mask的dtype为ByteTensor,非0的位置会被忽略不做注意力;若为BoolTensor,True对应的位置会被忽略;若为数值,则会直接加到attn_weights。

因为在decoder解码的时候,只能看该位置和它之前的,如果看后面就犯规了,所以需要attn_mask遮挡住。

下面函数直接复制PyTorch的,意思是确保不同维度的mask形状正确以及不同类型的转换

if attn_mask is not None:
    if attn_mask.dtype == torch.uint8:
        warnings.warn("Byte tensor for attn_mask in nn.MultiheadAttention is deprecated. Use bool tensor instead.")
        attn_mask = attn_mask.to(torch.bool)
    else:
        assert attn_mask.is_floating_point() or attn_mask.dtype == torch.bool, \
            f"Only float, byte, and bool types are supported for attn_mask, not {attn_mask.dtype}"

    if attn_mask.dim() == 2:
        correct_2d_size = (tgt_len, src_len)
        if attn_mask.shape != correct_2d_size:
            raise RuntimeError(f"The shape of the 2D attn_mask is {attn_mask.shape}, but should be {correct_2d_size}.")
            attn_mask = attn_mask.unsqueeze(0)
    elif attn_mask.dim() == 3:
        correct_3d_size = (bsz * num_heads, tgt_len, src_len)
        if attn_mask.shape != correct_3d_size:
            raise RuntimeError(f"The shape of the 3D attn_mask is {attn_mask.shape}, but should be {correct_3d_size}.")
    else:
        raise RuntimeError(f"attn_mask's dimension {attn_mask.dim()} is not supported")

attn_mask不同的是, key_padding_mask是用来遮挡住key里面的值,详细来说应该是 <pad></pad>,被忽略的情况与attn_mask一致。


if key_padding_mask is not None and key_padding_mask.dtype == torch.uint8:
    warnings.warn("Byte tensor for key_padding_mask in nn.MultiheadAttention is deprecated. Use bool tensor instead.")
    key_padding_mask = key_padding_mask.to(torch.bool)

先介绍两个小函数:

  • logical_or,输入两个tensor,并对这两个tensor里的值做 &#x903B;&#x8F91;&#x6216;运算,只有当两个值均为0的时候才为 False,其他时候均为 True
  • masked_fill,输入是一个mask,和用以填充的值。mask由1,0组成,0的位置值维持不变,1的位置用新值填充。
a = torch.tensor([0,1,10,0],dtype=torch.int8)
b = torch.tensor([4,0,1,0],dtype=torch.int8)
print(torch.logical_or(a,b))

r = torch.tensor([[0,0,0,0],[0,0,0,0]])
mask = torch.tensor([[1,1,1,1],[0,0,0,0]])
print(r.masked_fill(mask,1))

其实attn_mask和key_padding_mask有些时候对象是一致的,所以有时候可以合起来看。 softmax(-inf)=0,即此位置注意力分数被忽略。

if key_padding_mask is not None:
    assert key_padding_mask.shape == (bsz, src_len), \
        f"expecting key_padding_mask shape of {(bsz, src_len)}, but got {key_padding_mask.shape}"
    key_padding_mask = key_padding_mask.view(bsz, 1, 1, src_len).   \
        expand(-1, num_heads, -1, -1).reshape(bsz * num_heads, 1, src_len)

    if attn_mask is None:
        attn_mask = key_padding_mask
    elif attn_mask.dtype == torch.bool:
        attn_mask = attn_mask.logical_or(key_padding_mask)
    else:
        attn_mask = attn_mask.masked_fill(key_padding_mask, float("-inf"))

if attn_mask is not None and attn_mask.dtype == torch.bool:
    new_attn_mask = torch.zeros_like(attn_mask, dtype=torch.float)
    new_attn_mask.masked_fill_(attn_mask, float("-inf"))
    attn_mask = new_attn_mask

3.2.3 点积注意力

from typing import Optional, Tuple, Any
def _scaled_dot_product_attention(
    q: Tensor,
    k: Tensor,
    v: Tensor,
    attn_mask: Optional[Tensor] = None,
    dropout_p: float = 0.0,
) -> Tuple[Tensor, Tensor]:
    r'''
    在query, key, value上计算点积注意力,若有注意力遮盖则使用,并且应用一个概率为dropout_p的dropout

    参数:
        - q: shape:(B, Nt, E) B代表batch size, Nt是目标语言序列长度,E是嵌入后的特征维度
        - key: shape:(B, Ns, E) Ns是源语言序列长度
        - value: shape:(B, Ns, E)与key形状一样
        - attn_mask: 要么是3D的tensor,形状为:(B, Nt, Ns)或者2D的tensor,形状如:(Nt, Ns)

        - Output: attention values: shape:(B, Nt, E),与q的形状一致;attention weights: shape:(B, Nt, Ns)

    例子:
        >>> q = torch.randn((2,3,6))
        >>> k = torch.randn((2,4,6))
        >>> v = torch.randn((2,4,6))
        >>> out = scaled_dot_product_attention(q, k, v)
        >>> out[0].shape, out[1].shape
        >>> torch.Size([2, 3, 6]) torch.Size([2, 3, 4])
    '''
    B, Nt, E = q.shape
    q = q / math.sqrt(E)

    attn = torch.bmm(q, k.transpose(-2,-1))
    if attn_mask is not None:
        attn += attn_mask

    attn = F.softmax(attn, dim=-1)
    if dropout_p:
        attn = F.dropout(attn, p=dropout_p)

    output = torch.bmm(attn, v)
    return output, attn

3.3完整多头注意力机制-MultiheadAttention

点击快速回到:拆开看多头注意力机制

class MultiheadAttention(nn.Module):
    r'''
    参数:
        embed_dim: 词嵌入的维度
        num_heads: 平行头的数量
        batch_first: 若True,则为(batch, seq, feture),若为False,则为(seq, batch, feature)

    例子:
        >>> multihead_attn = MultiheadAttention(embed_dim, num_heads)
        >>> attn_output, attn_output_weights = multihead_attn(query, key, value)
    '''
    def __init__(self, embed_dim, num_heads, dropout=0., bias=True,
                 kdim=None, vdim=None, batch_first=False) -> None:

        super(MultiheadAttention, self).__init__()
        self.embed_dim = embed_dim
        self.kdim = kdim if kdim is not None else embed_dim
        self.vdim = vdim if vdim is not None else embed_dim
        self._qkv_same_embed_dim = self.kdim == embed_dim and self.vdim == embed_dim

        self.num_heads = num_heads
        self.dropout = dropout
        self.batch_first = batch_first
        self.head_dim = embed_dim // num_heads
        assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads"

        if self._qkv_same_embed_dim is False:
            self.q_proj_weight = Parameter(torch.empty((embed_dim, embed_dim)))
            self.k_proj_weight = Parameter(torch.empty((embed_dim, self.kdim)))
            self.v_proj_weight = Parameter(torch.empty((embed_dim, self.vdim)))
            self.register_parameter('in_proj_weight', None)
        else:
            self.in_proj_weight = Parameter(torch.empty((3 * embed_dim, embed_dim)))
            self.register_parameter('q_proj_weight', None)
            self.register_parameter('k_proj_weight', None)
            self.register_parameter('v_proj_weight', None)

        if bias:
            self.in_proj_bias = Parameter(torch.empty(3 * embed_dim))
        else:
            self.register_parameter('in_proj_bias', None)
        self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)

        self._reset_parameters()

    def _reset_parameters(self):
        if self._qkv_same_embed_dim:
            xavier_uniform_(self.in_proj_weight)
        else:
            xavier_uniform_(self.q_proj_weight)
            xavier_uniform_(self.k_proj_weight)
            xavier_uniform_(self.v_proj_weight)

        if self.in_proj_bias is not None:
            constant_(self.in_proj_bias, 0.)
            constant_(self.out_proj.bias, 0.)

    def forward(self, query: Tensor, key: Tensor, value: Tensor, key_padding_mask: Optional[Tensor] = None,
                need_weights: bool = True, attn_mask: Optional[Tensor] = None) -> Tuple[Tensor, Optional[Tensor]]:
        if self.batch_first:
            query, key, value = [x.transpose(1, 0) for x in (query, key, value)]

        if not self._qkv_same_embed_dim:
            attn_output, attn_output_weights = multi_head_attention_forward(
                query, key, value, self.num_heads,
                self.in_proj_weight, self.in_proj_bias,
                self.dropout, self.out_proj.weight, self.out_proj.bias,
                training=self.training,
                key_padding_mask=key_padding_mask, need_weights=need_weights,
                attn_mask=attn_mask, use_separate_proj_weight=True,
                q_proj_weight=self.q_proj_weight, k_proj_weight=self.k_proj_weight,
                v_proj_weight=self.v_proj_weight)
        else:
            attn_output, attn_output_weights = multi_head_attention_forward(
                query, key, value, self.num_heads,
                self.in_proj_weight, self.in_proj_bias,
                self.dropout, self.out_proj.weight, self.out_proj.bias,
                training=self.training,
                key_padding_mask=key_padding_mask, need_weights=need_weights,
                attn_mask=attn_mask)
        if self.batch_first:
            return attn_output.transpose(1, 0), attn_output_weights
        else:
            return attn_output, attn_output_weights

接下来可以实践一下,并且把位置编码加起来,可以发现加入位置编码和进行多头注意力的前后形状都是不会变的:


src = torch.randn((2,4,100))
src = positional_encoding(src,100,0.1)
print(src.shape)
multihead_attn = MultiheadAttention(100, 4, 0.1)
attn_output, attn_output_weights = multihead_attn(src,src,src)
print(attn_output.shape, attn_output_weights.shape)

torch.Size([2, 4, 100])
torch.Size([2, 4, 100]) torch.Size([4, 2, 2])

四、TransformerEncoder

4.1 Encoder Layer

Transformer代码解读(Pytorch)
class TransformerEncoderLayer(nn.Module):
    r'''
    参数:
        d_model: 词嵌入的维度(必备)
        nhead: 多头注意力中平行头的数目(必备)
        dim_feedforward: 全连接层的神经元的数目,又称经过此层输入的维度(Default = 2048)
        dropout: dropout的概率(Default = 0.1)
        activation: 两个线性层中间的激活函数,默认relu或gelu
        lay_norm_eps: layer normalization中的微小量,防止分母为0(Default = 1e-5)
        batch_first: 若True,则为(batch, seq, feture),若为False,则为(seq, batch, feature)(Default:False)

    例子:
        >>> encoder_layer = TransformerEncoderLayer(d_model=512, nhead=8)
        >>> src = torch.randn((32, 10, 512))
        >>> out = encoder_layer(src)
    '''

    def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1, activation=F.relu,
                 layer_norm_eps=1e-5, batch_first=False) -> None:
        super(TransformerEncoderLayer, self).__init__()
        self.self_attn = MultiheadAttention(d_model, nhead, dropout=dropout, batch_first=batch_first)
        self.linear1 = nn.Linear(d_model, dim_feedforward)
        self.dropout = nn.Dropout(dropout)
        self.linear2 = nn.Linear(dim_feedforward, d_model)

        self.norm1 = nn.LayerNorm(d_model, eps=layer_norm_eps)
        self.norm2 = nn.LayerNorm(d_model, eps=layer_norm_eps)
        self.dropout1 = nn.Dropout(dropout)
        self.dropout2 = nn.Dropout(dropout)
        self.activation = activation

    def forward(self, src: Tensor, src_mask: Optional[Tensor] = None, src_key_padding_mask: Optional[Tensor] = None) -> Tensor:
        src = positional_encoding(src, src.shape[-1])
        src2 = self.self_attn(src, src, src, attn_mask=src_mask,
        key_padding_mask=src_key_padding_mask)[0]
        src = src + self.dropout1(src2)
        src = self.norm1(src)
        src2 = self.linear2(self.dropout(self.activation(self.linear1(src))))
        src = src + self.dropout2(src2)
        src = self.norm2(src)
        return src


encoder_layer = TransformerEncoderLayer(d_model=512, nhead=8)
src = torch.randn((32, 10, 512))
out = encoder_layer(src)
print(out.shape)

4.2 Transformer layer组成Encoder

class TransformerEncoder(nn.Module):
    r'''
    参数:
        encoder_layer(必备)
        num_layers: encoder_layer的层数(必备)
        norm: 归一化的选择(可选)

    例子:
        >>> encoder_layer = TransformerEncoderLayer(d_model=512, nhead=8)
        >>> transformer_encoder = TransformerEncoder(encoder_layer, num_layers=6)
        >>> src = torch.randn((10, 32, 512))
        >>> out = transformer_encoder(src)
    '''

    def __init__(self, encoder_layer, num_layers, norm=None):
        super(TransformerEncoder, self).__init__()
        self.layer = encoder_layer
        self.num_layers = num_layers
        self.norm = norm

    def forward(self, src: Tensor, mask: Optional[Tensor] = None, src_key_padding_mask: Optional[Tensor] = None) -> Tensor:
        output = positional_encoding(src, src.shape[-1])
        for _ in range(self.num_layers):
            output = self.layer(output, src_mask=mask, src_key_padding_mask=src_key_padding_mask)

        if self.norm is not None:
            output = self.norm(output)

        return output

encoder_layer = TransformerEncoderLayer(d_model=512, nhead=8)
transformer_encoder = TransformerEncoder(encoder_layer, num_layers=6)
src = torch.randn((10, 32, 512))
out = transformer_encoder(src)
print(out.shape)

五、 Decoder Layer:

以两层encoder-decoder结构举例

Transformer代码解读(Pytorch)

; 5.1 TransformerDecoderLayer

class TransformerDecoderLayer(nn.Module):
    r'''
    参数:
        d_model: 词嵌入的维度(必备)
        nhead: 多头注意力中平行头的数目(必备)
        dim_feedforward: 全连接层的神经元的数目,又称经过此层输入的维度(Default = 2048)
        dropout: dropout的概率(Default = 0.1)
        activation: 两个线性层中间的激活函数,默认relu或gelu
        lay_norm_eps: layer normalization中的微小量,防止分母为0(Default = 1e-5)
        batch_first: 若True,则为(batch, seq, feture),若为False,则为(seq, batch, feature)(Default:False)

    例子:
        >>> decoder_layer = TransformerDecoderLayer(d_model=512, nhead=8)
        >>> memory = torch.randn((10, 32, 512))
        >>> tgt = torch.randn((20, 32, 512))
        >>> out = decoder_layer(tgt, memory)
    '''
    def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1, activation=F.relu,
                 layer_norm_eps=1e-5, batch_first=False) -> None:
        super(TransformerDecoderLayer, self).__init__()
        self.self_attn = MultiheadAttention(d_model, nhead, dropout=dropout, batch_first=batch_first)
        self.multihead_attn = MultiheadAttention(d_model, nhead, dropout=dropout, batch_first=batch_first)

        self.linear1 = nn.Linear(d_model, dim_feedforward)
        self.dropout = nn.Dropout(dropout)
        self.linear2 = nn.Linear(dim_feedforward, d_model)

        self.norm1 = nn.LayerNorm(d_model, eps=layer_norm_eps)
        self.norm2 = nn.LayerNorm(d_model, eps=layer_norm_eps)
        self.norm3 = nn.LayerNorm(d_model, eps=layer_norm_eps)
        self.dropout1 = nn.Dropout(dropout)
        self.dropout2 = nn.Dropout(dropout)
        self.dropout3 = nn.Dropout(dropout)

        self.activation = activation

    def forward(self, tgt: Tensor, memory: Tensor, tgt_mask: Optional[Tensor] = None,
                memory_mask: Optional[Tensor] = None,tgt_key_padding_mask: Optional[Tensor] = None, memory_key_padding_mask: Optional[Tensor] = None) -> Tensor:
        r'''
        参数:
            tgt: 目标语言序列(必备)
            memory: 从最后一个encoder_layer跑出的句子(必备)
            tgt_mask: 目标语言序列的mask(可选)
            memory_mask(可选)
            tgt_key_padding_mask(可选)
            memory_key_padding_mask(可选)
        '''
        tgt2 = self.self_attn(tgt, tgt, tgt, attn_mask=tgt_mask,
                              key_padding_mask=tgt_key_padding_mask)[0]
        tgt = tgt + self.dropout1(tgt2)
        tgt = self.norm1(tgt)
        tgt2 = self.multihead_attn(tgt, memory, memory, attn_mask=memory_mask,
                                   key_padding_mask=memory_key_padding_mask)[0]
        tgt = tgt + self.dropout2(tgt2)
        tgt = self.norm2(tgt)
        tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt))))
        tgt = tgt + self.dropout3(tgt2)
        tgt = self.norm3(tgt)
        return tgt

decoder_layer = nn.TransformerDecoderLayer(d_model=512, nhead=8)
memory = torch.randn((10, 32, 512))
tgt = torch.randn((20, 32, 512))
out = decoder_layer(tgt, memory)
print(out.shape)

5.2 Transformer layer组成Decoder

class TransformerDecoder(nn.Module):
    r'''
    参数:
        decoder_layer(必备)
        num_layers: decoder_layer的层数(必备)
        norm: 归一化选择

    例子:
        >>> decoder_layer =TransformerDecoderLayer(d_model=512, nhead=8)
        >>> transformer_decoder = TransformerDecoder(decoder_layer, num_layers=6)
        >>> memory = torch.rand(10, 32, 512)
        >>> tgt = torch.rand(20, 32, 512)
        >>> out = transformer_decoder(tgt, memory)
    '''
    def __init__(self, decoder_layer, num_layers, norm=None):
        super(TransformerDecoder, self).__init__()
        self.layer = decoder_layer
        self.num_layers = num_layers
        self.norm = norm

    def forward(self, tgt: Tensor, memory: Tensor, tgt_mask: Optional[Tensor] = None,
                memory_mask: Optional[Tensor] = None, tgt_key_padding_mask: Optional[Tensor] = None,
                memory_key_padding_mask: Optional[Tensor] = None) -> Tensor:
        output = tgt
        for _ in range(self.num_layers):
            output = self.layer(output, memory, tgt_mask=tgt_mask,
                         memory_mask=memory_mask,
                         tgt_key_padding_mask=tgt_key_padding_mask,
                         memory_key_padding_mask=memory_key_padding_mask)
        if self.norm is not None:
            output = self.norm(output)

        return output

decoder_layer =TransformerDecoderLayer(d_model=512, nhead=8)
transformer_decoder = TransformerDecoder(decoder_layer, num_layers=6)
memory = torch.rand(10, 32, 512)
tgt = torch.rand(20, 32, 512)
out = transformer_decoder(tgt, memory)
print(out.shape)

总结一下,其实经过位置编码,多头注意力,Encoder Layer和Decoder Layer形状不会变的,而Encoder和Decoder分别与src和tgt形状一致

六、 Transformer

Transformer代码解读(Pytorch)
class Transformer(nn.Module):
    r'''
    参数:
        d_model: 词嵌入的维度(必备)(Default=512)
        nhead: 多头注意力中平行头的数目(必备)(Default=8)
        num_encoder_layers:编码层层数(Default=8)
        num_decoder_layers:解码层层数(Default=8)
        dim_feedforward: 全连接层的神经元的数目,又称经过此层输入的维度(Default = 2048)
        dropout: dropout的概率(Default = 0.1)
        activation: 两个线性层中间的激活函数,默认relu或gelu
        custom_encoder: 自定义encoder(Default=None)
        custom_decoder: 自定义decoder(Default=None)
        lay_norm_eps: layer normalization中的微小量,防止分母为0(Default = 1e-5)
        batch_first: 若True,则为(batch, seq, feture),若为False,则为(seq, batch, feature)(Default:False)

    例子:
        >>> transformer_model = Transformer(nhead=16, num_encoder_layers=12)
        >>> src = torch.rand((10, 32, 512))
        >>> tgt = torch.rand((20, 32, 512))
        >>> out = transformer_model(src, tgt)
    '''
    def __init__(self, d_model: int = 512, nhead: int = 8, num_encoder_layers: int = 6,
                 num_decoder_layers: int = 6, dim_feedforward: int = 2048, dropout: float = 0.1,
                 activation = F.relu, custom_encoder: Optional[Any] = None, custom_decoder: Optional[Any] = None,
                 layer_norm_eps: float = 1e-5, batch_first: bool = False) -> None:
        super(Transformer, self).__init__()
        if custom_encoder is not None:
            self.encoder = custom_encoder
        else:
            encoder_layer = TransformerEncoderLayer(d_model, nhead, dim_feedforward, dropout,
                                                    activation, layer_norm_eps, batch_first)
            encoder_norm = nn.LayerNorm(d_model, eps=layer_norm_eps)
            self.encoder = TransformerEncoder(encoder_layer, num_encoder_layers)

        if custom_decoder is not None:
            self.decoder = custom_decoder
        else:
            decoder_layer = TransformerDecoderLayer(d_model, nhead, dim_feedforward, dropout,
                                                    activation, layer_norm_eps, batch_first)
            decoder_norm = nn.LayerNorm(d_model, eps=layer_norm_eps)
            self.decoder = TransformerDecoder(decoder_layer, num_decoder_layers, decoder_norm)

        self._reset_parameters()

        self.d_model = d_model
        self.nhead = nhead

        self.batch_first = batch_first

    def forward(self, src: Tensor, tgt: Tensor, src_mask: Optional[Tensor] = None, tgt_mask: Optional[Tensor] = None,
                memory_mask: Optional[Tensor] = None, src_key_padding_mask: Optional[Tensor] = None,
                tgt_key_padding_mask: Optional[Tensor] = None, memory_key_padding_mask: Optional[Tensor] = None) -> Tensor:
        r'''
        参数:
            src: 源语言序列(送入Encoder)(必备)
            tgt: 目标语言序列(送入Decoder)(必备)
            src_mask: (可选)
            tgt_mask: (可选)
            memory_mask: (可选)
            src_key_padding_mask: (可选)
            tgt_key_padding_mask: (可选)
            memory_key_padding_mask: (可选)

        形状:
            - src: shape:(S, N, E), (N, S, E) if batch_first.

            - tgt: shape:(T, N, E), (N, T, E) if batch_first.

            - src_mask: shape:(S, S).

            - tgt_mask: shape:(T, T).

            - memory_mask: shape:(T, S).

            - src_key_padding_mask: shape:(N, S).

            - tgt_key_padding_mask: shape:(N, T).

            - memory_key_padding_mask: shape:(N, S).

            [src/tgt/memory]_mask确保有些位置不被看到,如做decode的时候,只能看该位置及其以前的,而不能看后面的。
            若为ByteTensor,非0的位置会被忽略不做注意力;若为BoolTensor,True对应的位置会被忽略;
            若为数值,则会直接加到attn_weights

            [src/tgt/memory]_key_padding_mask 使得key里面的某些元素不参与attention计算,三种情况同上

            - output: shape:(T, N, E), (N, T, E) if batch_first.

        注意:
            src和tgt的最后一维需要等于d_model,batch的那一维需要相等

        例子:
            >>> output = transformer_model(src, tgt, src_mask=src_mask, tgt_mask=tgt_mask)
        '''
        memory = self.encoder(src, mask=src_mask, src_key_padding_mask=src_key_padding_mask)
        output = self.decoder(tgt, memory, tgt_mask=tgt_mask, memory_mask=memory_mask,
                              tgt_key_padding_mask=tgt_key_padding_mask,
                              memory_key_padding_mask=memory_key_padding_mask)
        return output

    def generate_square_subsequent_mask(self, sz: int) -> Tensor:
        r'''产生关于序列的mask,被遮住的区域赋值-inf,未被遮住的区域赋值为0'''
        mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1)
        mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0))
        return mask

    def _reset_parameters(self):
        r'''用正态分布初始化参数'''
        for p in self.parameters():
            if p.dim() > 1:
                xavier_uniform_(p)

transformer_model = Transformer(nhead=16, num_encoder_layers=12)
src = torch.rand((10, 32, 512))
tgt = torch.rand((20, 32, 512))
out = transformer_model(src, tgt)
print(out.shape)

到此为止,PyTorch的Transformer库我们已经全部实现,相比于官方的版本,手写的这个少了较多的判定语句。

致谢:本文由台运鹏撰写,datawhale-learn-nlp-with-transformers项目成员重新组织和整理。最后,期待您的阅读反馈和star,谢谢。

七、复习总结:(这一段是自己的总结笔记)

  • 位置编码是最后加入的,输入输出形状不变。
  • 每个attention层都有权重初始化(即输入映射成不同的QKV。而且每层权重不一样)
    除了encoder-decoder-attention层q是来自前一层输出,kv是来自encoder层最后的输出memory会导致qkv维度不一致,其它层qkv维度都是一样的。并且只有第一维不一致,分别是L和S。
  • 点积时会讲batch放到第一维,还有遮挡机制
  • encoderlayer1:输入src加入位置编码,进入 Multi-self-attention层。self.norm1(src + self.dropout1(src2))。即dropout输出src2,然后残差连接+Norm
  • encoderlayer2:全连接第一层3072神经元扩维4倍,之后激活并dropout,送入第二个全连接层降维回768维。之后同样的Add+Norm,即src2 = self.linear2(self.dropout(self.activation(self.linear1(src))))、self.norm2(src + self.dropout2(src2))。
  • out = transformer_encoder(src),两个线性层中间的激活函数,默认relu或gelu
  • decoderlayer:和encoder比加入第二层,tgt=self.multihead_attn(tgt, memory, memory)。和之前一样,三层之后都是self.norm(src + self.dropout(src2))。
  • out = decoder_layer(tgt, memory),memory = self.encoder(src)
  • encoder和decoder参数除了各自的layer和num_layers,还有个norm参数,默认最后一层输出标准化。
  • transformer:没有自定义时使用默认的encoder和decoder层
  • out = transformer_model(src, tgt)。

7.1 位置编码形状:

        - 输入: [batch_size, seq_length, num_features]
        - 输出: [batch_size, seq_length, num_features]
        - def positional_encoding(X, num_features, dropout_p=0.1, max_len=512)

7.2 多头注意力

0.2.1初始化:

self.kdim = kdim if kdim is not None else embed_dim
self.vdim = vdim if vdim is not None else embed_dim
self._qkv_same_embed_dim = self.kdim == embed_dim and self.vdim == embed_dim
  • 如果qkv维度不一致(encoder-decoder-attention层,主要是第一维序列长度不一致),则各自初始化。也就是三个不同的proj_weight来将X映射成qkv。
  • 如果qkv维度一致,则用一个3倍的权重矩阵转换之后分割成qkv
self.in_proj_weight = Parameter(torch.empty((3 * embed_dim, embed_dim)))

0.2.2 前向传播multi_head_attention_forward:

  • query, key, value通过_in_projection_packed变换得到q,k,v
  • 遮挡机制 attn_mask的dtype为ByteTensor,非0的位置会被忽略不做注意力;若为BoolTensor,True对应的位置会被忽略;若为数值,则会直接加到attn_weights。
  • key_padding_mask是用来遮挡key里面的padding部分
  • 点积注意力 多头拼接在一起,并且 q,k,v将Batch放在第一维以适合点积注意力(reshape) 输入:
  • query: (L, N, E) 点积时是 (N, L, E)
  • key: (S, N, E) 点积时是 (N, S, E)
  • value: (S, N, E) 点积时是 (N, S, E)
  • key_padding_mask: (N, S)
  • attn_mask: (L, S) or (N * num_heads, L, S)N代表着batch_size,num_heads代表注意力头的数目
    输出:
  • attn_output: (L, N, E)
  • attn_output_weights: (N, L, S)
    上面N是batch_size,L和S分别代表着目标语言tgt和源语言src序列长度。E是:词嵌入的维度embed_dim

7.3 encoder层前向传播:

        src = positional_encoding(src, src.shape[-1])
        src2 = self.self_attn(src, src, src, attn_mask=src_mask,
        key_padding_mask=src_key_padding_mask)[0]
        src = src + self.dropout1(src2)
        src = self.norm1(src)
        src2 = self.linear2(self.dropout(self.activation(self.linear1(src))))
        src = src + self.dropout(src2)
        src = self.norm2(src)
        return src

torch.nn.dropout源码在这里
decoderlayer前向传播中:

  • tgt过masked-self-attention层后第一次Add+Norm,
  • 进入encoder-decoder-self.multihead_attention层(此时输入是tgt、memory和memory),第二次Add+Norm
  • 进入全连接层(两层),之后第三次Add+Norm
out = decoder_layer(tgt, memory)
        '''参数:
            tgt: 目标语言序列(必备)
            memory: 从最后一个encoder_layer跑出的句子(必备)
        '''
        tgt2 = self.self_attn(tgt, tgt, tgt, attn_mask=tgt_mask,
                              key_padding_mask=tgt_key_padding_mask)[0]
        tgt = tgt + self.dropout1(tgt2)
        tgt = self.norm1(tgt)
        tgt2 = self.multihead_attn(tgt, memory, memory, attn_mask=memory_mask,
                                   key_padding_mask=memory_key_padding_mask)[0]
        tgt = tgt + self.dropout2(tgt2)
        tgt = self.norm2(tgt)
        tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt))))
        tgt = tgt + self.dropout3(tgt2)
        tgt = self.norm3(tgt)
        return tgt

7.4 TransformerDecoder前向传播:

output = tgt
for _ in range(self.num_layers):
    output = self.layer(output, memory)

7.5 Transformer前向传播

memory = self.encoder(src, mask=src_mask, src_key_padding_mask=src_key_padding_mask)
output = self.decoder(tgt, memory, tgt_mask=tgt_mask, memory_mask=memory_mask,
                              tgt_key_padding_mask=tgt_key_padding_mask,
                              memory_key_padding_mask=memory_key_padding_mask)
return output

Original: https://blog.csdn.net/qq_56591814/article/details/119881538
Author: 神洛华
Title: Transformer代码解读(Pytorch)

原创文章受到原创版权保护。转载请注明出处:https://www.johngo689.com/527915/

转载文章受原作者版权保护。转载请注明原作者出处!

(0)

大家都在看

亲爱的 Coder【最近整理,可免费获取】👉 最新必读书单  | 👏 面试题下载  | 🌎 免费的AI知识星球