ACVFofARMA(1,1)

[X_{t} – \phi X_{t-1} = Z_{t} + \theta Z_{t-1} ]

where (|\phi| < 1) and (\left{ Z_{t} \right} \sim WN(0, ~ \sigma^{2}))。

它的 ACVF (autocovariance function) 可以通过改写为 linear process 的形式的方法求出,其中 linear process 定义为一个 time series (\left{ X_{t} \right}) which can be written as:

[X_{t} = \sum\limits^{\infty}{j = -\infty} \varphi{j} Z_{t – j} ]

其中对于(\forall j \in \mathbb{Z}),系数 (\varphi_{j}) 为常数,并且(\left{ Z_{t} \right} \sim WN(0, ~ \sigma^{2}))。

对于上述的一个 linear process,它的 ACVF 为:

[\gamma (h) = \sigma^2 \sum\limits^{\infty}{j = -\infty} \varphi{j}\varphi_{j+h} ]

这是因为:

[\begin{align} \gamma(h) & = Cov(X_{t+h}, ~ X_{t})\ & = Cov(\sum\limits^{\infty}{j = -\infty} \varphi{j} Z_{t + h – j}, ~ \sum\limits^{\infty}{j = -\infty} \varphi{j} Z_{t – j}) \ & = Cov(\sum\limits^{\infty}{i = -\infty} \varphi{i} Z_{t + h – i}, ~ \sum\limits^{\infty}{j = -\infty} \varphi{j} Z_{t – j}) \end{align} ]

由于 (Z_{t} \sim WN(0, ~ \sigma^2)),那么:

[Cov(Z_{t}, ~ Z_{t}) = Var(Z_{t}) = \sigma^2 ]

并且对于 (\forall s \neq t):

[Cov(Z_{s}, ~ Z_{t}) = 0 ]

因此观察 (Cov(\sum\limits^{\infty}{i = -\infty} \varphi{i} Z_{t + h – i}, ~ \sum\limits^{\infty}{j = -\infty} \varphi{j} Z_{t – j})),将它逐项展开后,当且仅当 (Z_{t+h-i}) 和 (Z_{t-j}) 为同一个随机变量时,有:

[Cov(Z_{t+h-i}, ~ Z_{t-j}) = \sigma^{2} ]

否则:

[Cov(Z_{t+h-i}, ~ Z_{t-j}) = 0 ]

也就是说,当且仅当下标满足 (t + h – i = t – j \implies i = j + h) 时,展开后的该项不为 (0)。那么不为零的各项前面的系数应是 (\varphi_{j}) 和 (\varphi_{j+h}),且值为 (\sigma^{2}),即:

[\gamma (h) = \sigma^2 \sum\limits^{\infty}{j = -\infty} \varphi{j}\varphi_{j+h} ]

推导如下:

(ARMA(1, 1)) 的 LHS:

[\begin{align} X_{t} – \phi X_{t-1} & = X_{t} – \phi B X_{t}\ & = (1 – \phi B) X_{t} \end{align} ]

其中 (B) 为 backward shift operater,那么 (ARMA(1, ~ 1)) process 可以继续做如下变换:

[\begin{align} X_{t} & = \frac{1}{1 – \phi B} (Z_{t} + \theta Z_{t-1})\ & = (1 + \phi B + \phi^{2} B^{2} + \phi^{3} B^{3} + \cdots) (Z_{t} + \theta Z_{t-1})\ & = (Z_{t} + \phi B Z_{t} + \phi^{2} B^{2} Z_{t} + \phi^{3} B^{3} Z_{t} + \cdots) + (\theta Z_{t-1} + \theta \phi B Z_{t-1} + \theta \phi^{2} B^{2} Z_{t-1} + \theta \phi^{3} B^{3} Z_{t-1} +\cdots)\ & = (Z_{t} + \phi Z_{t-1} + \phi^{2} Z_{t-2} + \phi^{3}Z_{t-3} + \cdots) + (\theta Z_{t-1} + \theta \phi Z_{t-2} + \theta \phi^{2} Z_{t-3} + \cdots)\ & = Z_{t} + (\phi + \theta) Z_{t-1} + \phi (\phi + \theta) Z_{t-2} + \phi^{2} (\phi + \theta) Z_{t-3} + \cdots \end{align} ]

因此它可以写作 linear process 的形式:

[X_{t} = \sum\limits^{\infty}{j = 0} \varphi{j} Z_{t – j} ]

其中,(\varphi_{0} = 1),(\varphi_{j} = \phi^{j-1}(\phi + \theta)) for (j \geq 1)。

因此它的 ACVF 为:

  • 当 (h \geq 1): [\begin{align} \gamma (h) & = \sigma^2 \sum\limits^{\infty}{j = 0} \varphi{j}\varphi_{j+h}\ & = \sigma^{2} \left(\sum\limits^{\infty}{j = 1} \varphi{j}\varphi_{j+h} + \varphi_{0}\varphi_{h} \right)\ & = \sigma^{2} \left(\sum\limits^{\infty}{j = 1} \phi^{j+h-1}(\phi+\theta)\phi^{j-1}(\phi+\theta) + \varphi{h} \right)\ & = \sigma^{2} \left( \phi^{h-1} (\phi + \theta) + (\phi + \theta)^{2} \phi^{h} \sum\limits^{\infty}_{j=1}\phi^{2j-2} \right)\ & = \sigma^{2} \left( \phi^{h-1}(\phi+\theta) + \frac{(\phi+\theta)^{2}\phi^{h}}{1 – \phi^{2}} \right) \end{align} ]
  • 当 (h = 0): [\gamma(h) = \sigma^{2}\left( 1 + \frac{(\phi+\theta)^{2}}{1-\phi^{2}}\right) ]

Original: https://www.cnblogs.com/chetianjian/p/16436386.html
Author: 车天健
Title: ACVFofARMA(1,1)

原创文章受到原创版权保护。转载请注明出处:https://www.johngo689.com/712775/

转载文章受原作者版权保护。转载请注明原作者出处!

(0)

大家都在看

亲爱的 Coder【最近整理,可免费获取】👉 最新必读书单  | 👏 面试题下载  | 🌎 免费的AI知识星球