Pytorch实现ResNet

  • ResNet网络模型
import torch
import torch.nn as nn

class BaicsBlock(nn.Module):

    def expansion(self):
        expansion = 1
        return expansion

    def __init__(self, in_channel, out_channel, stride=1, downsample=None):
        super(BaicsBlock, self).__init__()
        self.conv1 = nn.Conv2d(in_channels=in_channel,
                               out_channels=out_channel,
                               kernel_size=3,
                               stride=stride,
                               padding=1,
                               bias=False)
        self.bn1 = nn.BatchNorm2d(out_channel)
        self.relu =nn.ReLU(inplace=True)
        self.conv2 = nn.Conv2d(in_channels=out_channel,
                               out_channels=out_channel,
                               kernel_size=3,
                               stride=stride,
                               padding=1,
                               bias=False)
        self.bn2 = nn.BatchNorm2d(out_channel)
        self.downsample = downsample

    def forward(self, x):

        identity = x
        if self.downsample is not None:
            identity = self.downsample(x)

        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)

        x = self.conv2(x)
        x = self.bn2(x)
        x +=identity
        x = self.relu(x)

        return x

class Bottleneck(nn.Module):
    def expansion(self):
        expansion = 4
        return expansion

    def __bool__(self, in_channel, out_channel, stride=1, downsample=None):
        super(Bottleneck, self).__init__()
        self.conv1 = nn.Conv2d(in_channels=in_channel,
                               out_channels=out_channel,
                               kernel_size=1,
                               stride=1,
                               padding=1,
                               bias=False)
        self.bn1 = nn.BatchNorm2d(out_channel)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = nn.Conv2d(in_channels=out_channel,
                               out_channels=out_channel,
                               kernel_size=3,
                               stride=stride,
                               padding=1,
                               bias=False)
        self.bn2 = nn.BatchNorm2d(out_channel)
        self.conv3 = nn.Conv2d(in_channels=out_channel,
                               out_channels=out_channel,
                               kernel_size=1,
                               stride=1,
                               padding=1,
                               bias=False)
        self.bn3 = nn.BatchNorm2d(out_channel*self.expansion())
        self.downsample = downsample

    def forward(self, x):
        identity = x
        if self.downsample is not None:
            identity = self.downsample(x)

        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)

        x = self.conv2(x)
        x = self.bn2(x)
        x = self.relu(x)

        x = self.conv3(x)
        x = self.bn3(x)
        x += identity
        x = self.relu(x)

        return x

class ResNet(nn.Module):
    def __init__(self, block, block_list, num_classes=1000, include_top=True):
        super(ResNet, self).__init__()
        self.include_top = include_top
        self.in_channel = 64

        self.conv1 = nn.Conv2d(in_channels=3,
                               out_channels=self.in_channel,
                               kernel_size=7,
                               stride=2,
                               padding=3,
                               bias=False)
        self.bn1 = nn.BatchNorm2d(self.in_channel)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2)

        self.layer_1 = self.make_layer(block, 64, block_list[0])
        self.layer_2 = self.make_layer(block, 128, block_list[1], stride=2)
        self.layer_3 = self.make_layer(block, 256, block_list[2], stride=2)
        self.layer_4 = self.make_layer(block, 512, block_list[3], stride=2)
        if self.include_top:
            self.avgpool = nn.AdaptiveAvgPool1d((1,1))
            self.fc = nn.Linear(512 * block.expansion(self), num_classes)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')

    def make_layer(self, block, channel, block_list, stride=1):
        downsample = None
        if stride != 1 or self.in_channel != channel * block.expansion(self):
            downsample = nn.Sequential(
                nn.Conv2d(self.in_channel, channel * block.expansion(self), kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(channel * block.expansion(self)))

        layers = []
        layers.append(block(self.in_channel, channel, downsample=downsample, stride=stride))
        self.in_channel = channel * block.expansion(self)

        for _ in range(1, block_list):
            layers.append(block(self.in_channel, channel))

        return nn.Sequential(*layers)

    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)

        x = self.layer_1(x)
        x = self.layer_2(x)
        x = self.layer_3(x)
        x = self.layer_4(x)

        if self.include_top:
            x = self.avgpool(x)
            x = torch.flatten(x, 1)
            x = self.fc(x)

        return x
def ResNet18(num_classes=1000, include_top=True):
    return ResNet(BaicsBlock, [2, 2, 2, 2], num_classes=num_classes, include_top=include_top)
def ResNet34(num_classes=1000, include_top=True):
    return ResNet(BaicsBlock, [3, 4, 6, 3], num_classes=num_classes, include_top=include_top)
def ResNet50(num_classes=1000, include_top=True):
    return ResNet(Bottleneck, [3, 4, 6, 3], num_classes=num_classes, include_top=include_top)
def ResNet101(num_classes=1000, include_top=True):
    return ResNet(Bottleneck, [3, 4, 23, 3], num_classes=num_classes, include_top=include_top)
def ResNet152(num_classes=1000, include_top=True):
    return ResNet(Bottleneck, [3, 8, 36, 3], num_classes=num_classes, include_top=include_top)
  • ResNet网络训练(5分类的花分类)
from nlp.task.CIFAR10_try.ResNet import ResNet34
import os
import json
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import transforms, datasets
from tqdm import tqdm
def main():

    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    print("using {} device.".format(device))

    data_transform = {
        "train": transforms.Compose([transforms.RandomResizedCrop(224),
                                     transforms.RandomHorizontalFlip(),
                                     transforms.ToTensor(),
                                     transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]),
        "val": transforms.Compose([transforms.Resize(256),
                                   transforms.CenterCrop(224),
                                   transforms.ToTensor(),
                                   transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])}

    data_root = os.path.abspath(os.path.join(os.getcwd(), "../.."))
    image_path = os.path.join(data_root, "data_set", "flower_data")
    assert os.path.exists(image_path), "{} path does not exist.".format(image_path)

    train_dataset = datasets.ImageFolder(root=os.path.join(image_path, "train"),
                                         transform=data_transform["train"])
    train_num = len(train_dataset)

    flower_list = train_dataset.class_to_idx
    cla_dict = dict((val, key) for key, val in flower_list.items())

    json_str = json.dumps(cla_dict, indent=4)
    with open('class_indices.json', 'w') as json_file:
        json_file.write(json_str)

    batch_size = 16
    nw = min([os.cpu_count(), batch_size if batch_size > 1 else 0, 8])
    print('Using {} dataloader workers every process'.format(nw))

    train_loader = torch.utils.data.DataLoader(train_dataset,
                                               batch_size=batch_size, shuffle=True,
                                               num_workers=nw)

    validate_dataset = datasets.ImageFolder(root=os.path.join(image_path, "val"),
                                            transform=data_transform["val"])
    val_num = len(validate_dataset)
    validate_loader = torch.utils.data.DataLoader(validate_dataset,
                                                  batch_size=batch_size, shuffle=False,
                                                  num_workers=nw)

    print("using {} images for training, {} images for validation.".format(train_num,
                                                                           val_num))

    net = ResNet34()
    model_weight_path = "./resnet34-pre.pth"
    assert os.path.exists(model_weight_path), "file {} does not exist.".format(model_weight_path)
    net.load_state_dict(torch.load(model_weight_path, map_location=device))
    in_channel = net.fc.in_features
    net.fc = nn.Linear(in_channel, 5)
    net.to(device)

    loss_function = nn.CrossEntropyLoss()
    params = [p for p in net.parameters() if p.requires_grad]
    optimizer = optim.Adam(params, lr=0.0001)

    epochs = 5
    best_acc = 0.0
    save_path = './resNet34.pth'
    train_steps = len(train_loader)
    for epoch in range(epochs):

        net.train()
        running_loss = 0.0
        train_bar = tqdm(train_loader)
        for step, data in enumerate(train_bar):
            images, labels = data
            optimizer.zero_grad()
            logits = net(images.to(device))
            loss = loss_function(logits, labels.to(device))
            loss.backward()
            optimizer.step()

            running_loss += loss.item()

            train_bar.desc = "train epoch[{}/{}] loss:{:.3f}".format(epoch + 1,
                                                                     epochs,
                                                                     loss)

        net.eval()
        acc = 0.0
        with torch.no_grad():
            val_bar = tqdm(validate_loader)
            for val_data in val_bar:
                val_images, val_labels = val_data
                outputs = net(val_images.to(device))

                predict_y = torch.max(outputs, dim=1)[1]
                acc += torch.eq(predict_y, val_labels.to(device)).sum().item()

                val_bar.desc = "valid epoch[{}/{}]".format(epoch + 1,
                                                           epochs)

        val_accurate = acc / val_num
        print('[epoch %d] train_loss: %.3f  val_accuracy: %.3f' %
              (epoch + 1, running_loss / train_steps, val_accurate))

        if val_accurate > best_acc:
            best_acc = val_accurate
            torch.save(net.state_dict(), save_path)

    print('Finished Training')

if __name__ == '__main__':
    main()

Original: https://blog.csdn.net/qq_51778415/article/details/115795522
Author: 殇小气
Title: Pytorch实现ResNet

原创文章受到原创版权保护。转载请注明出处:https://www.johngo689.com/690880/

转载文章受原作者版权保护。转载请注明原作者出处!

(0)

大家都在看

亲爱的 Coder【最近整理,可免费获取】👉 最新必读书单  | 👏 面试题下载  | 🌎 免费的AI知识星球