[DeFRCN] Decouple Faster R-CNN for Few-Shot Object Detection(ICCV 2021)

[DeFRCN] Decouple Faster R-CNN for Few-Shot Object Detection(ICCV 2021)

; 1. Motivation

​ 本文基于Transfer-Learning Based 以及 Faster R-CNN进行改进。

​ 本文针对分类和回归任务中存在的矛盾点进行分析:

  • In this paper, we look closely into the conventional Faster R-CNN and analyze its contradictions from two orthogonal perspectives, namely multi-stage (RPN vs. RCNN) and multi-task (classification vs. localization).

  • Contribution

本文关于网络结构的2个创新点, Gradient Decoupled Layer用于多阶段的解耦,Prototypical Calibration Block用于多任务的解耦。

其中GDL是针对backbone,来解耦之前层和后面层;而PCB则是offline的prototype的分类层,用于boost原有的分类层。

  • We look closely into the conventional Faster R-CNN and propose a simple yet effective architecture for few-shot detection, named Decoupled Faster R-CNN, which can be learned end-to-end via straightforward fine-tuning.

  • To deal with the data-scarce scenario, we further present two novel modules, i.e. GDL and PCB, to perform de- coupling among multiple components of Faster R-CNN and boost classification performance respectively.

  • DeFRCN is remarkably superior to SOTAs on various benchmarks, revealing the effectiveness of our approach.

  • Method

[DeFRCN] Decouple Faster R-CNN for Few-Shot Object Detection(ICCV 2021)

Backbone、RPN、Box Classifier以及Regressor在fine-tune阶段是trainable,而RCNN是frozen的。

; Problem of multi-task learning

作者认为对于多任务学习来说,子网络的优化目标存在不一致性。

RPN是where to look, RCNN是what to look

classification head需要translation invariant features,而localization head 需要translation covariant features。

因此,可能导致一个suboptimal solution

Problem of shared backbone

由于Backbone的梯度回传和RCNN以及 RPN有关,但是这2者有一定的矛盾性,因此,作者认为这可能会导致FSOD性能的下降。并且在FSOD中,第二阶段的RPN会受到更多的前景-背景的混淆问题foreground-background confusion。因此可能造成对于base classes过拟合梯度的传播,到backbone以及RCNN

  • which means a pro- posal that belongs to background in the base training phase is likely to be foreground in the novel fine-tuning phase

3.1 Gradient Decoupled Layer

[DeFRCN] Decouple Faster R-CNN for Few-Shot Object Detection(ICCV 2021)
  • Perform Decoupling with GDL[DeFRCN] Decouple Faster R-CNN for Few-Shot Object Detection(ICCV 2021)
  • Optimization with GDL
    [DeFRCN] Decouple Faster R-CNN for Few-Shot Object Detection(ICCV 2021)

[DeFRCN] Decouple Faster R-CNN for Few-Shot Object Detection(ICCV 2021)

[DeFRCN] Decouple Faster R-CNN for Few-Shot Object Detection(ICCV 2021)

; 3.2 Prototypical Calibration Block

对于PCB提出的动机:

本文注意到few shot 分类分支产生了很大部分低质量的分数,这驱使我们来消除高得分的FP以及修正低分数的正样本。

  • We notice that the under-explored few-shot classification branch generates a large amount of low-quality scores, which motivates us to eliminate high-scored false positives and remedy low-scored missing samples by introducing a Prototypical Calibration Block (PCB) for score refinement.

PCB的组成是classifier、RoIAlign、prototype bank。

给定M-way K-shot 任务的support set S,PCB提取了原始的图片特征图,然后直接使用对于GTbox的RoIAlign操作(类似Attention RPN那篇的操作),这样就可以得到对于MK instance的特征表示。这样我们构建一个prototype bank P = p c c = 1 M P= {p_c}^M_{c=1}P =p c ​c =1 M ​,其中对于每一个类别c的prototype的公式如下:

[DeFRCN] Decouple Faster R-CNN for Few-Shot Object Detection(ICCV 2021)

其中subset S只包含某一个类别的所有instance的集合。

给定一个proposal y ^ = ( c i , s i , b i ) \hat y =(c_i, s_i, b_i)y ^​=(c i ​,s i ​,b i ​) ,这个proposal就是Faster R-CNN原有分支中fine-tune阶段得到的特征,c是label,s是score,b是box;PCB首先使用RoIAlign在b i b_i b i ​上,接着对应x i x_i x i ​以及p c i p_{c_i}p c i ​​应用余弦相似度。

[DeFRCN] Decouple Faster R-CNN for Few-Shot Object Detection(ICCV 2021)

然后使用weight aggregation进行加权:

[DeFRCN] Decouple Faster R-CNN for Few-Shot Object Detection(ICCV 2021)

由于PCB是offline的结构,因此它即插即用,并不会对网络的训练造成很大的开销。并且PCB和proposal的分类分支不贡献参数。

  • Further- more, since the PCB module is offline without any further training, it can be plug-and-play and easily equipped to any other architectures to build stronger few-shot detectors.

因此,我认为总体而言,这篇DEFRCN,它是对于meta-learning以及transfer-learning的融合,使用Transfer-Learning的总体框架,但是对于分类任务的问题上,他们使用support set 进行一个weight reweighting的融合的操作;不过它还对于backbone的特征的反向进行了修改,尽可能区分分类中的平移不变性以及回归问题的平移协变(covariance)性质。

  1. Experiment

4.1.1 VOC

[DeFRCN] Decouple Faster R-CNN for Few-Shot Object Detection(ICCV 2021)

; 4.1.2 COCO

[DeFRCN] Decouple Faster R-CNN for Few-Shot Object Detection(ICCV 2021)

4.1.3 COCO to VOC

[DeFRCN] Decouple Faster R-CNN for Few-Shot Object Detection(ICCV 2021)

; 4.2 Ablation Study

4.2.1 Effectiveness of different modules

[DeFRCN] Decouple Faster R-CNN for Few-Shot Object Detection(ICCV 2021)

; 4.2.2 Effectiveness of the degree of decoupling

This observation prompts us to perform stop-gradient for RPN and scale-gradient for RCNN in DeFRCN

[DeFRCN] Decouple Faster R-CNN for Few-Shot Object Detection(ICCV 2021)

4.2.3 Can GDL boost conventional detection?

[DeFRCN] Decouple Faster R-CNN for Few-Shot Object Detection(ICCV 2021)

Original: https://blog.csdn.net/weixin_43823854/article/details/120071759
Author: Ah丶Weii
Title: [DeFRCN] Decouple Faster R-CNN for Few-Shot Object Detection(ICCV 2021)

原创文章受到原创版权保护。转载请注明出处:https://www.johngo689.com/687818/

转载文章受原作者版权保护。转载请注明原作者出处!

(0)

大家都在看

亲爱的 Coder【最近整理,可免费获取】👉 最新必读书单  | 👏 面试题下载  | 🌎 免费的AI知识星球