岭回归模型|机器学习|回归算法

目录

*
1.岭回归模型

+ 1.1背景
+ 1.2损失函数
2.相关代码

+ 2.1RidgeRegression类
+ 2.2求解代码
+ 2.3绘图代码
3.直接调库使用

1.岭回归模型

1.1背景

对于回归问题来说,它们的基本内容基本上都是相同的,所以岭回归模型与线性回归模型类似:
y = θ 0 x 0 + θ 1 x 1 + θ 2 x 2 + . . . θ n x n {\color{Violet}y = θ_{0}x_{0}+θ_{1}x_{1}+θ_{2}x_{2}+…θ_{n}x_{n}}y =θ0 ​x 0 ​+θ1 ​x 1 ​+θ2 ​x 2 ​+…θn ​x n ​它们的差别主要体现在损失函数的构造上。

对于有些矩阵,矩阵中某个元素的一个很小的变动,会引起最后计算结果误差很大,这种矩阵称为”病态矩阵”。有些时候不正确的计算方法也会使一个正常的矩阵在运算中表现出病态。对于高斯消去法来说,如果主元(即对角线上的元素)上的元素很小,在计算时就会表现出病态的特征。

而岭回归模型使用改良的最小二乘估计法,通过放弃最小二乘法的无偏性,以损失部分信息、降低精度为代价获得回归系数更为符合实际、更可靠的回归方法,对病态数据的拟合要强于最小二乘法。

1.2损失函数

岭回归模型的损失函数构造如下:
J ( θ ) = 1 2 m ∑ i = 1 m ( y i − w x i ) 2 + λ 2 ∑ j = 1 n θ j 2 {\color{Violet}J(\theta) = \frac{1}{2m}\sum_{i=1}^{m}(y_{i}-wx_{i})^{2}+\frac{\lambda}{2}\sum_{j=1}^{n}\theta_{j}^{2}}J (θ)=2 m 1 ​i =1 ∑m ​(y i ​−w x i ​)2 +2 λ​j =1 ∑n ​θj 2 ​

且:
∑ j = 1 n θ j 2 ≤ λ {\color{Violet}\sum_{j=1}^{n}\theta _{j}^{2} ≤ \lambda}j =1 ∑n ​θj 2 ​≤λ

上式中的 𝑤 {\color{Red}𝑤}w 是长度为 𝑛 {\color{Red}𝑛}n 的向量,不包括截距项的系数 θ 0 {\color{Red}θ_{0}}θ0 ​ 。m {\color{Red}m}m为样本数;𝑛 {\color{Red}𝑛}n 为特征数。同样可以使用矩阵进行简化表达式,结果如下:
J ( θ ) = 1 2 ( Y − Y ^ ) 2 + λ 2 θ 2 {\color{Violet}J(\theta)=\frac{1}{2}(Y-\hat Y)^{2}+\frac{\lambda}{2}\theta ^{2}}J (θ)=2 1 ​(Y −Y ^)2 +2 λ​θ2

我们对上式 θ {\color{Red}\theta}θ 进行求得,令求导后的式子等于0,可以求得最优解,转换后可以得到 θ {\color{Red}\theta}θ 的表达式为:
θ = ( X T X + λ I ) − 1 ( X T Y ) {\color{Violet}\theta = (X^{T}X+\lambda I)^{-1}(X^{T}Y)}θ=(X T X +λI )−1 (X T Y )

其中 λ {\color{Red}\lambda}λ 做为传入的参数我们需要设置它的值,而 I {\color{Red}I}I 为单位矩阵,相对于线性回归模型来说此模型添加了 λ I {\color{Red}\lambda I}λI 这一项,此举可以保证 X T X {\color{Red}X^{T}X}X T X 可逆,所以总得来说可以解决病态矩阵的问题。

2.相关代码

2.1RidgeRegression类

import numpy as np

class RidgeRegression :
    def __init__(self):
        '''初始化线性回归模型,最终要求得theta'''
        self.theta = None

    def fit(self,xMat,yMat,lam=0.2):
        xMat=np.mat(xMat)
        yMat=np.mat(yMat).T
        xTx = xMat.T*xMat
        denom = xTx + np.eye(np.shape(xMat)[1])*lam

        if np.linalg.det(denom) == 0.0:
            print("这个矩阵是奇异的,不可求逆")
            return
        self.theta = denom.I * (xMat.T*yMat)

    def predict(self,test_data):
        test_data=np.mat(test_data)
        y_predict=test_data*self.theta

        return y_predict

2.2求解代码

import pandas as pd
import numpy as np

data = pd.read_csv('/data/shixunfiles/11996b194a005626887e927dd336f390_1577324743961.csv')

X = data.iloc[:,:-1].values
y = data.iloc[:,-1].values

X = np.hstack((np.ones((X.shape[0],1)),X))

rr = RidgeRegression()
rr.fit(X,y)

ypredict = rr.predict(X)

这里展示了csv中一些数据,下标从0-6的列表示的是每个特征点的特征值,下标为7的列表示每个特征点对应的标签。注意此时我们需要添加一列x0,值都为1。

岭回归模型|机器学习|回归算法

2.3绘图代码

import matplotlib.pyplot as plt
import seaborn as sns;
sns.set()

plt.scatter(range(200),y[:200],s=20)
plt.plot(range(200),ypredict[:200],color='black')

岭回归模型|机器学习|回归算法

3.直接调库使用

∙ \bullet ∙ 实际在使用时,不需要自己实现岭回归的模型,此时我们直接调库即可;

∙ \bullet ∙ 格式为: from sklearn.linear_model import Ridge

∙ \bullet ∙ 调用时: ridge = Ridge(alpha=1.0)

∙ \bullet ∙ 常用方法如下:

方法格式含义fit(X,y)拟合岭回归模型,X为特征值矩阵,y为标签向量predict(X)得到模型预测的结果向量,X为输入特征值矩阵

Original: https://blog.csdn.net/weixin_46308081/article/details/120381294
Author: 桃陉
Title: 岭回归模型|机器学习|回归算法

原创文章受到原创版权保护。转载请注明出处:https://www.johngo689.com/629915/

转载文章受原作者版权保护。转载请注明原作者出处!

(0)

大家都在看

亲爱的 Coder【最近整理,可免费获取】👉 最新必读书单  | 👏 面试题下载  | 🌎 免费的AI知识星球