深度学习实战(一):LeNet实现CIFAR-10图像分类

深度学习实战:LeNet实现CIFAR-10图像分类

代码已上传至github(麻烦Star~)
更多Ai资讯: 公主号AiCharm

深度学习实战(一):LeNet实现CIFAR-10图像分类

; 1.数据集介绍

利用torchvision.datasets函数可以在线导入pytorch中的数据集,包含一些常见的数据集如MNIST、CIFAR-10等。本次使用的是CIFAR10数据集,也是一个很经典的图像分类数据集,由 Hinton 的学生 Alex Krizhevsky 和 Ilya Sutskever 整理的一个用于识别普适物体的小型数据集,一共包含 10 个类别的 RGB 彩色图片。

深度学习实战(一):LeNet实现CIFAR-10图像分类
深度学习实战(一):LeNet实现CIFAR-10图像分类
PyTorch的CIFAR-10数据集有时下载不了,我这里将下载好的压缩包放在网盘中,需要的可以自行下载,解压后放在当前项目文件的data文件夹下。链接:https://pan.baidu.com/s/1NBHp0SxEOJ5EIyYUsDHm_g
提取码:qp3k

2.LeNet网络介绍

LeNet网络之前在我的博客详细讲解过:https://blog.csdn.net/muye_IT/article/details/123539199?spm=1001.2014.3001.5501
LeNet网络架构总览图:

深度学习实战(一):LeNet实现CIFAR-10图像分类
深度学习实战(一):LeNet实现CIFAR-10图像分类

; 3. model.py 创建

model.py ——定义LeNet网络模型


import torch.nn as nn
import torch.nn.functional as F

class LeNet(nn.Module):
    def __init__(self):
        super(LeNet, self).__init__()
        self.conv1 = nn.Conv2d(3, 16, 5)
        self.pool1 = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(16, 32, 5)
        self.pool2 = nn.MaxPool2d(2, 2)
        self.fc1 = nn.Linear(32*5*5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        x = self.pool1(x)
        x = F.relu(self.conv2(x))
        x = self.pool2(x)
        x = x.view(-1, 32*5*5)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x

Conv2d、MaxPool2d、Linear在pytorch中对应的函数,以及函数参数的设置
常见的参数:

  • in_channels:输入特征矩阵的深度。如输入一张RGB彩色图像,那in_channels=3
  • out_channels:输入特征矩阵的深度。也等于卷积核的个数,使用n个卷积核输出的特征矩阵深度就是n
  • kernel_size:卷积核的尺寸。可以是int类型,如3 代表卷积核的height=width=3,也可以是tuple类型如(3,5)代表卷积核的height=3,width=5
  • stride:卷积核的步长。默认为1,和kernel_size一样输入可以是int型,也可以是tuple类型
  • padding:补零操作,默认为0。可以为int型如1即补一圈0,如果输入为tuple型如(2, 1) 代表在上下补2行,左右补1列
Conv2d ['stride', 'padding', 'dilation', 'groups','padding_mode', 'output_padding', 'in_channels','out_channels', 'kernel_size']
MaxPool2d('kernel_size', 'stride', 'padding', 'dilation','return_indices', 'ceil_mode')
Linear('in_features', 'out_features')

  1. train.py创建

train.py ——加载数据集并训练,训练集计算loss,测试集计算accuracy,保存训练好的网络参数

4.1 相关包的加载

import torch
import torchvision
import torch.nn as nn
from model import LeNet
import torch.optim as optim
import torchvision.transforms as transforms

4.2 数据预处理

由shape (H x W x C) in the range [0, 255] → shape (C x H x W) in the range [0.0, 1.0]

   transform = transforms.Compose(
        [transforms.ToTensor(),
         transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

4.3 加载数据集


train_set = torchvision.datasets.CIFAR10(root='./data',
                                         train=True,
                                        download=True,
                                        transform=transform)

train_loader = torch.utils.data.DataLoader(train_set,
                                           batch_size=50,
                                          shuffle=False,
                                          num_workers=0)

4.4 加载测试集


test_set = torchvision.datasets.CIFAR10(root='./data',
                                        train=False,
                                        download=False,transform=transform)

test_loader = torch.utils.data.DataLoader(test_set,
                                          batch_size=10000,
                                          shuffle=False, num_workers=0)

test_data_iter = iter(test_loader)
test_image, test_label = test_data_iter.next()

4.5 代码(GPU训练版本)

使用下面语句可以在有GPU时使用GPU,无GPU时使用CPU进行训练

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(device)

也可以直接指定

device = torch.device("cuda")

对应的,需要用to()函数来将Tensor在CPU和GPU之间相互移动,分配到指定的device中计算

import torch
import torchvision
import torch.nn as nn
from model import LeNet
import torch.optim as optim
import torchvision.transforms as transforms

def main():
    transform = transforms.Compose(
        [transforms.ToTensor(),
         transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

    train_set = torchvision.datasets.CIFAR10(root='./data', train=True,
                                             download=False, transform=transform)
    train_loader = torch.utils.data.DataLoader(train_set, batch_size=36,
                                               shuffle=True, num_workers=0)

    val_set = torchvision.datasets.CIFAR10(root='./data', train=False,
                                           download=False, transform=transform)
    val_loader = torch.utils.data.DataLoader(val_set, batch_size=5000,
                                             shuffle=False, num_workers=0)
    val_data_iter = iter(val_loader)
    val_image, val_label = val_data_iter.next()

    net = LeNet()
    net.to(device)
    loss_function = nn.CrossEntropyLoss()
    optimizer = optim.Adam(net.parameters(), lr=0.001)

    for epoch in range(5):
        running_loss = 0.0
        for step, data in enumerate(train_loader, start=0):

            inputs, labels = data

            optimizer.zero_grad()

            outputs = net(inputs.to(device))
            loss = loss_function(outputs, labels.to(device))
            loss.backward()
            optimizer.step()

            running_loss += loss.item()
            if step % 500 == 499:
                with torch.no_grad():
                    outputs = net(test_image.to(device))
                    predict_y = torch.max(outputs, dim=1)[1]
                    accuracy = torch.eq(predict_y, val_label).sum().item() / val_label.size(0)

                    print('[%d, %5d] train_loss: %.3f  test_accuracy: %.3f' %
                          (epoch + 1, step + 1, running_loss / 500, accuracy))
                    running_loss = 0.0

    print('Finished Training')

    save_path = './Lenet.pth'
    torch.save(net.state_dict(), save_path)

if __name__ == '__main__':
    main()

4.6 代码(CPU训练版本)

import torch
import torchvision
import torch.nn as nn
from model import LeNet
import torch.optim as optim
import torchvision.transforms as transforms

def main():
    transform = transforms.Compose(
        [transforms.ToTensor(),
         transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

    train_set = torchvision.datasets.CIFAR10(root='./data', train=True,
                                             download=False, transform=transform)
    train_loader = torch.utils.data.DataLoader(train_set, batch_size=36,
                                               shuffle=True, num_workers=0)

    val_set = torchvision.datasets.CIFAR10(root='./data', train=False,
                                           download=False, transform=transform)
    val_loader = torch.utils.data.DataLoader(val_set, batch_size=5000,
                                             shuffle=False, num_workers=0)
    val_data_iter = iter(val_loader)
    val_image, val_label = val_data_iter.next()

    net = LeNet()
    loss_function = nn.CrossEntropyLoss()
    optimizer = optim.Adam(net.parameters(), lr=0.001)

    for epoch in range(5):

        running_loss = 0.0
        for step, data in enumerate(train_loader, start=0):

            inputs, labels = data

            optimizer.zero_grad()

            outputs = net(inputs)
            loss = loss_function(outputs, labels)
            loss.backward()
            optimizer.step()

            running_loss += loss.item()
            if step % 500 == 499:
                with torch.no_grad():
                    outputs = net(val_image)
                    predict_y = torch.max(outputs, dim=1)[1]
                    accuracy = torch.eq(predict_y, val_label).sum().item() / val_label.size(0)

                    print('[%d, %5d] train_loss: %.3f  test_accuracy: %.3f' %
                          (epoch + 1, step + 1, running_loss / 500, accuracy))
                    running_loss = 0.0

    print('Finished Training')

    save_path = './Lenet.pth'
    torch.save(net.state_dict(), save_path)

if __name__ == '__main__':
    main()

  1. predict.py 创建

predict.py——得到训练好的网络参数后,用自己找的图像进行分类测试,自己下载一张照片保存在根目录下,命名为1.jpg

import torch
import torchvision.transforms as transforms
from PIL import Image

from model import LeNet

def main():
    transform = transforms.Compose(
        [transforms.Resize((32, 32)),
         transforms.ToTensor(),
         transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

    classes = ('plane', 'car', 'bird', 'cat',
               'deer', 'dog', 'frog', 'horse', 'ship', 'truck')

    net = LeNet()
    net.load_state_dict(torch.load('Lenet.pth'))

    im = Image.open('1.jpg')
    im = transform(im)
    im = torch.unsqueeze(im, dim=0)

    with torch.no_grad():
        outputs = net(im)
        predict = torch.max(outputs, dim=1)[1].data.numpy()
    print(classes[int(predict)])

if __name__ == '__main__':
    main()

代码已上传至github(麻烦Star~)
更多Ai资讯: 公主号AiCharm

深度学习实战(一):LeNet实现CIFAR-10图像分类

Original: https://blog.csdn.net/muye_IT/article/details/123855068
Author: Jasper0420
Title: 深度学习实战(一):LeNet实现CIFAR-10图像分类

原创文章受到原创版权保护。转载请注明出处:https://www.johngo689.com/618115/

转载文章受原作者版权保护。转载请注明原作者出处!

(0)

大家都在看

亲爱的 Coder【最近整理,可免费获取】👉 最新必读书单  | 👏 面试题下载  | 🌎 免费的AI知识星球