Java实现负载均衡算法–轮询和加权轮询

1.普通轮询算法

轮询(Round Robin,RR)是依次将用户的访问请求,按循环顺序分配到web服务节点上,从1开始到最后一台服务器节点结束,然后再开始新一轮的循环。这种算法简单,但是没有考虑到每台节点服务器的具体性能,请求分发往往不均衡。

代码实现:

/**
 * 普通轮询算法
 */
public class RoundRobin {
    private static Integer index = 0;
    private static List nodes = new ArrayList<>();
    // 记录轮询输出结果
    private static StringBuffer stringBuffer = new StringBuffer();
    // 准备模拟数据
    static {
        nodes.add("192.168.1.101");
        nodes.add("192.168.1.103");
        nodes.add("192.168.1.102");
        System.out.println("普通轮询算法的所有节点:"+nodes);//打印所有节点
    }

    // 关键代码
    public String selectNode(){
        String ip = null;
//      之前写错的代码
//      synchronized (index){
        synchronized (RoundRobin.class){
            // 下标复位
            if(index>=nodes.size()) index = 0;
            ip = nodes.get(index);
            stringBuffer.append(Thread.currentThread().getName()+"==获取节点:"+ ip +"\n");
            index++;
        }
        return ip;
    }

    // 并发测试:两个线程循环获取节点
    public static void main(String[] args) throws InterruptedException {
        new Thread(() -> {
            RoundRobin roundRobin1 = new RoundRobin();
            for (int i=1;i {
            RoundRobin roundRobin1 = new RoundRobin();
            for (int i=1;i

执行结果:不同线程访问,结果依旧是按顺序循环分配节点

普通轮询算法的所有节点:[192.168.1.101, 192.168.1.103, 192.168.1.102]
Thread-0==获取节点:192.168.1.101
Thread-1==获取节点:192.168.1.103
Thread-1==获取节点:192.168.1.102
Thread-0==获取节点:192.168.1.101
Thread-1==获取节点:192.168.1.103
Thread-0==获取节点:192.168.1.102

2.加权轮询算法

加权轮询(Weighted Round Robin,WRR)是根据设定的权重值来分配访问请求,权重值越大的,被分到的请求数也就越多。一般根据每台节点服务器的具体性能来分配权重。

将需要轮询的所有节点 按权重数循环生成一个List 集合,然后就跟普通轮询算法一样,来一个、分配一个、进1位。

例如:

所有节点信息:{{“192.168.1.100”,5},{“192.168.1.101”,1},{“192.168.1.102”,3}}

那么生成的List 集合为:

{“192.168.1.100”,

“192.168.1.100”,

“192.168.1.100”,

“192.168.1.100”,

“192.168.1.100”,

“192.168.1.101”,

“192.168.1.102”,

“192.168.1.102”,

“192.168.1.102”}

后面就是普通轮询算法的逻辑

代码实现:

类似于二维数组 降维成 一维数组,然后使用普通轮询

/**
 *  简单版的加权轮询
 */public class WeightedRoundRobinSimple {
    private static Integer index = 0;
    private static Map mapNodes = new HashMap<>();
    // 记录轮询输出结果
    private static StringBuffer stringBuffer = new StringBuffer();

    // 准备模拟数据
    static {
        mapNodes.put("192.168.1.101",1);
        mapNodes.put("192.168.1.102",3);
        mapNodes.put("192.168.1.103",2);
        /* -- 以下代码只为了方便查看所有节点,删除不影响 -- S */
        List nodes = new ArrayList<>();
        Iterator> iterator = mapNodes.entrySet().iterator();
        while (iterator.hasNext()){
            Map.Entry entry = iterator.next();
            String key = entry.getKey();
            for (int i=0;i nodes = new ArrayList<>();
        Iterator> iterator = mapNodes.entrySet().iterator();
        while (iterator.hasNext()){
            Map.Entry entry = iterator.next();
            String key = entry.getKey();
            for (int i=0;i=nodes.size()) index = 0;
            ip = nodes.get(index);
            stringBuffer.append(Thread.currentThread().getName()+"==获取节点:"+ ip +"\n");
            index++;
        }
        return ip;
    }

    // 并发测试:两个线程循环获取节点
    public static void main(String[] args) throws InterruptedException {
        new Thread(() -> {
            WeightedRoundRobinSimple roundRobin1 = new WeightedRoundRobinSimple();
            for (int i=1;i {
            WeightedRoundRobinSimple roundRobin1 = new WeightedRoundRobinSimple();
            for (int i=1;i

执行结果:两个线程循环测试,输出结果会出现交替分配到不同的IP,但最终的效果都是一个个按顺序分配,类似于普通轮询算法。

简单版的加权轮询:[192.168.1.103, 192.168.1.103, 192.168.1.101, 192.168.1.102, 192.168.1.102, 192.168.1.102]
Thread-0==获取节点:192.168.1.103
Thread-1==获取节点:192.168.1.103
Thread-1==获取节点:192.168.1.101
Thread-0==获取节点:192.168.1.102
Thread-0==获取节点:192.168.1.102
Thread-1==获取节点:192.168.1.102
Thread-0==获取节点:192.168.1.103
Thread-1==获取节点:192.168.1.103
Thread-1==获取节点:192.168.1.101
Thread-0==获取节点:192.168.1.102
Thread-0==获取节点:192.168.1.102
Thread-1==获取节点:192.168.1.102

本文的重点难点。

在实现方式一的算法中可以很明显的看到,同权重的IP会被连续分配,也就是说同一个IP在短时间内收到不同的请求,过了这个连续点,就要等到下一轮才会被分配到,并没有做到均匀分配节点。

实现方式二将 尽可能地均匀分配每个节点,节点分配不再是连续的,但最终的权重比和上一个方式一样,这种加权轮询又被称为平滑加权轮询。

理解关键的几个参数和算法逻辑,方便理解代码的实现。

关键参数

  • ip:负载IP
  • weight:权重,保存配置的权重
  • effectiveWeight:有效权重,轮询的过程权重可能变化
  • currentWeight:当前权重,比对该值大小获取节点

注意几个点:

weight 权重,在整个过程不会对它做修改,只用来保存配置时的权重参数值。如果直接拿weight 运算而不保存配置的最原始权重参数,那么将会丢失最关键的用户配置的权重参数。

effectiveWeight 有效权重,在整个过程可能会变化,初始值等于weight,主要用于当节点出现分配失败时降低权重值,成功时提高权重值(但不能大于weight值),本案例为了简化算法,并未加入这功能,因此本案例中effectiveWeight始终等于weight。

currentWeight 当前权重,通过循环所有节点比对该值大小来分配权重最大的节点,初始值等于weight。

三个权重参数的变化情况

仅仅针对本案例,因为本案例为了简化算法,并未加入[节点出现分配失败时降低权重值,成功时提高权重值(但不能大于weight值)的功能],所以有效权重effectiveWeight 不会发生变化。

  • 第一次加权轮询时:currentWeight = weight = effectiveWeight;
  • 后面每次加权轮询时:currentWeight 的值都会不断变化,weight 和effectiveWeight 的值不变;
  • 被分配的节点的currentWeight = currentWeight – 权重之和
  • 所有节点的currentWeight = currentWeight + effectiveWeight

你面前有三个瓶子A、B、C,分别装有1L、3L、2L水。

第一轮分配情况:B多,所以把B瓶子的3L水,分1L给A,分2L给C(按权重分),分完之后:A、B、C分别为:2L、0L、4L

第二轮分配情况:C多,所以把C瓶子的4L水,分1L给A,分3L给B(按权重分),分完之后:A、B、C分别为:3L、3L、0L

第三轮分配情况:A和B一样多,那么拿谁去分呢? 拿谁其实都一样(算法中写了A 大于B才选A,现在等于,所以不选A),所以把B瓶子的3L水,分1L给A,分2L给C(按权重分),分完之后:A、B、C分别为:4L、0L、2L

然后不断的进行下去……

简化成数学逻辑(代码实现)的关键两步

  • 被分配的节点的currentWeight = currentWeight – 权重之和
  • 所有节点的currentWeight = currentWeight + effectiveWeight

下面通过阅读代码来理解

节点对象

/**
 * String ip:负载IP
 * final Integer weight:权重,保存配置的权重
 * Integer effectiveWeight:有效权重,轮询的过程权重可能变化
 * Integer currentWeight:当前权重,比对该值大小获取节点
 *   第一次加权轮询时:currentWeight = weight = effectiveWeight
 *   后面每次加权轮询时:currentWeight 的值都会不断变化,其他权重不变
 */public class Node implements Comparable{
    private String ip;
    private final Integer weight;
    private Integer effectiveWeight;
    private Integer currentWeight;

    public Node(String ip,Integer weight){
        this.ip = ip;
        this.weight = weight;
        this.effectiveWeight = weight;
        this.currentWeight = weight;
    }

    public Node(String ip, Integer weight, Integer effectiveWeight, Integer currentWeight) {
        this.ip = ip;
        this.weight = weight;
        this.effectiveWeight = effectiveWeight;
        this.currentWeight = currentWeight;
    }

    public String getIp() {
        return ip;
    }

    public void setIp(String ip) {
        this.ip = ip;
    }

    public Integer getWeight() {
        return weight;
    }

    public Integer getEffectiveWeight() {
        return effectiveWeight;
    }

    public void setEffectiveWeight(Integer effectiveWeight) {
        this.effectiveWeight = effectiveWeight;
    }

    public Integer getCurrentWeight() {
        return currentWeight;
    }

    public void setCurrentWeight(Integer currentWeight) {
        this.currentWeight = currentWeight;
    }

    @Override
    public int compareTo(Node node) {
        return currentWeight > node.currentWeight ? 1 : (currentWeight.equals(node.currentWeight) ? 0 : -1);
    }

    @Override
    public String toString() {
        return "{ip='" + ip + "', weight=" + weight + ", effectiveWeight=" + effectiveWeight + ", currentWeight=" + currentWeight + "}";
    }
}

加权轮询算法

/**
 * 加权轮询算法
 */public class WeightedRoundRobin {

    private static List nodes = new ArrayList<>();
    // 权重之和
    private static Integer totalWeight = 0;
    // 准备模拟数据
    static {
        nodes.add(new Node("192.168.1.101",1));
        nodes.add(new Node("192.168.1.102",3));
        nodes.add(new Node("192.168.1.103",2));
        nodes.forEach(node -> totalWeight += node.getEffectiveWeight());
    }

    /**
     * 按照当前权重(currentWeight)最大值获取IP
     * @return Node
     */
    public Node selectNode(){
        if (nodes ==null || nodes.size() 0 ? tempNodeOfMaxWeight : node;
            }
            // 必须new个新的节点实例来保存信息,否则引用指向同一个堆实例,后面的set操作将会修改节点信息
            nodeOfMaxWeight = new Node(tempNodeOfMaxWeight.getIp(),tempNodeOfMaxWeight.getWeight(),tempNodeOfMaxWeight.getEffectiveWeight(),tempNodeOfMaxWeight.getCurrentWeight());

            // 调整当前权重比:按权重(effectiveWeight)的比例进行调整,确保请求分发合理。
            tempNodeOfMaxWeight.setCurrentWeight(tempNodeOfMaxWeight.getCurrentWeight() - totalWeight);
            sb.append(" -> "+printCurrentWeight(nodes));

            nodes.forEach(node -> node.setCurrentWeight(node.getCurrentWeight()+node.getEffectiveWeight()));

            sb.append(" -> "+printCurrentWeight(nodes));
            System.out.println(sb); //打印权重变化过程
        }
        return nodeOfMaxWeight;
    }

    // 格式化打印信息
    private String printCurrentWeight(List nodes){
        StringBuffer stringBuffer = new StringBuffer("[");
        nodes.forEach(node -> stringBuffer.append(node.getCurrentWeight()+",") );
        return stringBuffer.substring(0, stringBuffer.length() - 1) + "]";
    }

    // 并发测试:两个线程循环获取节点
    public static void main(String[] args){
        Thread thread = new Thread(() -> {
            WeightedRoundRobin weightedRoundRobin1 = new WeightedRoundRobin();
            for(int i=1;i

执行结果:

main==加权轮询–[当前权重]值的变化:[1,3,2] -> [1,-3,2] -> [2,0,4] main==第1次轮询选中[当前权重最大]的节点:{ip=’192.168.1.102′, weight=3, effectiveWeight=3, currentWeight=3}
Thread-0==加权轮询–[当前权重]值的变化:[2,0,4] -> [2,0,-2] -> [3,3,0] Thread-0==第1次轮询选中[当前权重最大]的节点:{ip=’192.168.1.103′, weight=2, effectiveWeight=2, currentWeight=4}
main==加权轮询–[当前权重]值的变化:[3,3,0] -> [3,-3,0] -> [4,0,2] main==第2次轮询选中[当前权重最大]的节点:{ip=’192.168.1.102′, weight=3, effectiveWeight=3, currentWeight=3}
main==加权轮询–[当前权重]值的变化:[4,0,2] -> [-2,0,2] -> [-1,3,4] main==第3次轮询选中[当前权重最大]的节点:{ip=’192.168.1.101′, weight=1, effectiveWeight=1, currentWeight=4}
Thread-0==加权轮询–[当前权重]值的变化:[-1,3,4] -> [-1,3,-2] -> [0,6,0] Thread-0==第2次轮询选中[当前权重最大]的节点:{ip=’192.168.1.103′, weight=2, effectiveWeight=2, currentWeight=4}
main==加权轮询–[当前权重]值的变化:[0,6,0] -> [0,0,0] -> [1,3,2] main==第4次轮询选中[当前权重最大]的节点:{ip=’192.168.1.102′, weight=3, effectiveWeight=3, currentWeight=6}
Thread-0==加权轮询–[当前权重]值的变化:[1,3,2] -> [1,-3,2] -> [2,0,4] Thread-0==第3次轮询选中[当前权重最大]的节点:{ip=’192.168.1.102′, weight=3, effectiveWeight=3, currentWeight=3}
main==加权轮询–[当前权重]值的变化:[2,0,4] -> [2,0,-2] -> [3,3,0] main==第5次轮询选中[当前权重最大]的节点:{ip=’192.168.1.103′, weight=2, effectiveWeight=2, currentWeight=4}
Thread-0==加权轮询–[当前权重]值的变化:[3,3,0] -> [3,-3,0] -> [4,0,2] Thread-0==第4次轮询选中[当前权重最大]的节点:{ip=’192.168.1.102′, weight=3, effectiveWeight=3, currentWeight=3}
main==加权轮询–[当前权重]值的变化:[4,0,2] -> [-2,0,2] -> [-1,3,4] main==第6次轮询选中[当前权重最大]的节点:{ip=’192.168.1.101′, weight=1, effectiveWeight=1, currentWeight=4}
Thread-0==加权轮询–[当前权重]值的变化:[-1,3,4] -> [-1,3,-2] -> [0,6,0] Thread-0==第5次轮询选中[当前权重最大]的节点:{ip=’192.168.1.103′, weight=2, effectiveWeight=2, currentWeight=4}
Thread-0==加权轮询–[当前权重]值的变化:[0,6,0] -> [0,0,0] -> [1,3,2] Thread-0==第6次轮询选中[当前权重最大]的节点:{ip=’192.168.1.102′, weight=3, effectiveWeight=3, currentWeight=6}

为了方便分析,简化两线程执行后的结果

[当前权重]值的变化:[1,3,2] -> [1,-3,2] -> [2,0,4]
[当前权重]值的变化:[2,0,4] -> [2,0,-2] -> [3,3,0]
[当前权重]值的变化:[3,3,0] -> [3,-3,0] -> [4,0,2]
[当前权重]值的变化:[4,0,2] -> [-2,0,2] -> [-1,3,4]
[当前权重]值的变化:[-1,3,4] -> [-1,3,-2] -> [0,6,0]
[当前权重]值的变化:[0,6,0] -> [0,0,0] -> [1,3,2]
[当前权重]值的变化:[1,3,2] -> [1,-3,2] -> [2,0,4]
[当前权重]值的变化:[2,0,4] -> [2,0,-2] -> [3,3,0]
[当前权重]值的变化:[3,3,0] -> [3,-3,0] -> [4,0,2]
[当前权重]值的变化:[4,0,2] -> [-2,0,2] -> [-1,3,4]
[当前权重]值的变化:[-1,3,4] -> [-1,3,-2] -> [0,6,0]
[当前权重]值的变化:[0,6,0] -> [0,0,0] -> [1,3,2]

因为整个过程只有当前权重发生变化,所以分析清楚它就明白了整个过程。

结论:

分配完成后当前权重发生变化,但 权限之和还是等于最初值

每6轮(1+3+2权重)就出现权重全部为0,所以会出现重新循环,6正好等于权重之和,权重比等于1/6 : 3/6 : 2/6;

a=权重1,b=权重3,c=权重2,那么权重变化的6(a+b+c)次中, 分配情况为:b c b a c b,很明显,每个节点均匀按权重分配,节点分配不再是连续的。这也是最重要的结论,正是实现方式二在文初提到的要实现的关键点。

该算法在权重比相差很大时,比如:A=1,B=5,那这个算法的结果就跟方式一没啥区别了,分配结果就变成了:{A,B,B,B,B,B},既然没区别,那根据算法复杂情况,那肯定方式一更好了,所以方式一和方式二可以互补,可以根据权重比选择不同的算法。

留下悬念

第一点:节点出现分配失败时降低有效权重值,成功时提高有效权重值(但不能大于weight值)的功能。理解了方式二,后面再加这块功能进去就很好理解了;

第二点:该算法实现的背后数学证明,用的是什么数学理论?

Original: https://www.cnblogs.com/dennyLee2025/p/16128477.html
Author: 渊渟岳
Title: Java实现负载均衡算法–轮询和加权轮询

原创文章受到原创版权保护。转载请注明出处:https://www.johngo689.com/576546/

转载文章受原作者版权保护。转载请注明原作者出处!

(0)

大家都在看

  • 基于Vue的二进制时钟组件 — fx67llBinaryClock

    fx67llClock Easy & Good Clock ! npm 组件说明 一个基于Vue的二进制时钟组件,没什么卵用,做着好玩,可以方便您装饰个人主页 使用步骤 n…

    数据库 2023年6月11日
    090
  • Pisa-Proxy SQL 解析之 Lex & Yacc

    一、前言 1.1 作者介绍 王波,SphereEx MeshLab 研发工程师,目前专注于 Database Mesh,Cloud Native 的研发。Linux,llvm,ya…

    数据库 2023年6月16日
    0113
  • [Mysql]null与真值

    SQL的逻辑运算使用的是三值逻辑,逻辑表达式的计算结果有三种可能, true, false, unknown 比较运算的表达式含 NULL时会产生 unknown结果,例如 SEL…

    数据库 2023年6月16日
    091
  • Redisson

    ​ Redisson是架设在Redis基础上的一个Java驻内存数据网格(In-Memory Data Grid)。充分的利用了Redis键值数据库提供的一系列优势,基于Java实…

    数据库 2023年6月6日
    093
  • 达梦数据库_DM8配置MPP主备

    为了提高MPP系统可靠性,克服由于单节点故障导致整个系统不能继续正常工作,DM 在普通的MPP系统基础上,引入主备守护机制,将MPP节点作为主库节点,增加备库作为备份节点,必要时可…

    数据库 2023年6月11日
    0103
  • 就这么一个简单的校验,80%的程序员却做不到,更不理解!

    在学生管理系统里,其中会有学生信息采集的功能。程序结构不外乎下面的分层实现方式。 开发出来这个功能,我觉得大家都易如反掌了。 当然易如反掌。 OK,我要说的是数据校验,以最简单的非…

    数据库 2023年6月9日
    088
  • 994.腐烂的橘子

    994.腐烂的橘子 在给定的 m x n 网格 grid 中,每个单元格可以有以下三个值之一: 值 0 代表空单元格;值 1 代表新鲜橘子;值 2 代表腐烂的橘子。每分钟,腐烂的橘…

    数据库 2023年6月16日
    090
  • Centos7下Oracle启动命令

    1、查询挂载历史记录 在root账户下使用一下命令 查看历史使用挂载的那个磁盘 &#x67E5;&#x770B;&#x6302;&#x8F7D;&a…

    数据库 2023年6月16日
    099
  • 从生命周期的角度看线程和进程之间的异同

    概述 进程与线程想必都不陌生,两者有诸多相同点,甚至可以这样说,线程就是”轻量级的进程”。而且两者基本的五个状态也几乎一样,但进程和线程在状态切换时的触发条…

    数据库 2023年6月11日
    092
  • django中批量插入数据

    1.什么是批量插入 在django中的orm给我们提供了一个bulk_create方法,批量创建插入数据! 2.为什么要使用批量插入 让我们首先来看看不使用大容量插入的情况: [E…

    数据库 2023年5月24日
    095
  • Oracle扩展表空间

    Oracle扩展表空间 前言: Oracle表空间扩展最大为32G,目前我还未找到可以打破限制的办法。 一、查看表空间信息和使用情况 查看表空间的名字及文件所在位置 — &amp…

    数据库 2023年6月16日
    0112
  • SQL的函数

    MySQL常用的日期函数函数 功能 curdate() 返回当前日期 curtime() 返回当前时间 now() 返回当前日期和时间 year() 获取指定date的年份 mon…

    数据库 2023年5月24日
    097
  • 分布式数据库中的事务时序

    在单机数据库领域,我们为每个事务都分配一个序列号,比如Oracle的SCN(SystemChangeNumber),MySQL的LSN(LogSequenceNumber),这个序…

    数据库 2023年6月9日
    0115
  • MySql用户与权限控制

    MySql用户与权限控制 — 刷新权限命令 # — 刷新mysql权限命令 flush privileges; 用户管理 1、查看用户 #查看用户 USE mysql…

    数据库 2023年6月11日
    092
  • mysql8使用tmpfs内存磁盘当内存数据库的配置方法

    内存关系数据库没有找到开源好用的,很多都是商用。虽然mysql有memory引擎,但写是整体锁表,没法用。 一直想将mysql放入内存中,搜索n次资料,没找到合适的,可能之前思路不…

    数据库 2023年5月24日
    0114
  • MySQL特性:MRR,Multi-Range Read,多范围读

    孔个个MRR在5.6版本开始支持,相关文章不少。但是读起来层次感差了一些,在这里我用自己的理解重新整理了一版。这里参考了很多在网络上能找到的资料,才使我更全面的理解MRR,但时间有…

    数据库 2023年6月16日
    063
亲爱的 Coder【最近整理,可免费获取】👉 最新必读书单  | 👏 面试题下载  | 🌎 免费的AI知识星球