最优化-二次规划

二次规划的

标准形式

\mathop {min} \limits_{x}f\left( x \right) =\mathop {min} \limits_{x}\frac{1}{2}x^THx+c^Tx

s.t.\begin{cases}

Ax=b\

x\ge 0\

\end{cases}

无约束形式

可以直接求得解析解为$x=-H^{-1}c$。

不等式约束形式(x>0)

$$
\mathop {min} \limits_{x}f\left( x \right) =\mathop {min} \limits_{x}\frac{1}{2}x^THx+c^Tx
\
s.t.\begin{cases}
Ax\le b\
x\ge 0\
\end{cases}
$$
转化为标准形式的方法:

加入松弛变量:$Ax+Is=b,\,\,x,s \ge 0$
$$
\left[ \begin{matrix}
A& I\
\end{matrix} \right] \left[ \begin{array}{c}
x\
s\
\end{array} \right] =b,\,\,\left[ \begin{array}{c}
x\
s\
\end{array} \right] \ge 0

不等式约束形式($x \in R^n$)

$$\mathop {min} \limits_{x}f\left( x \right) =\mathop {min} \limits_{x}\frac{1}{2}x^THx+c^Tx
\
s.t.\begin{cases}
Ax\le b\
x\in \mathbb{R}^n\
\end{cases}$$

转化为标准形式的方法:

定义$Define\,\,x=x^+-x^-\,\,with\,\,x^+,x^-\ge 0$,可得$Ax^+ – x^- +ls = b$其中$x^+, x^-, s \geq 0$,

转化为$$
\left[ \begin{matrix}
A& -A& I\
\end{matrix} \right] \left[ \begin{array}{c}
x^+\
x^-\
s\
\end{array} \right] =b,\,\,\left[ \begin{array}{c}
x^+\
x^-\
s\
\end{array} \right] \ge 0
$$
将二次规划看作有约束最优化问题

形式为:

$$f\left( x \right) =\frac{1}{2}x^THx+c^Tx
\
s.t.\,\,\begin{cases}
Ax-b=0\
-x\le 0\
\end{cases}$$

其Kuhn-Tucker条件为:

$$\begin{cases}
Ax=b\text{(原始可行性)}\
x\ge 0\text{(原始可行性)}\
Hx+A^T\lambda -\mu =-c\text{(平稳性)}\
\mu ^Tx=0\text{(互补松弛性)}\
\mu \ge 0\text{(对偶可行性)}\
\end{cases}$$

Original: https://www.cnblogs.com/zhaoke271828/p/16748506.html
Author: Viktor_Cullen
Title: 最优化-二次规划

原创文章受到原创版权保护。转载请注明出处:https://www.johngo689.com/566006/

转载文章受原作者版权保护。转载请注明原作者出处!

(0)

大家都在看

亲爱的 Coder【最近整理,可免费获取】👉 最新必读书单  | 👏 面试题下载  | 🌎 免费的AI知识星球