一些常用的 std 类型

std::allocator

标准库中包含一个名为allocator的类,允许我们将分配和初始化分离。使用allocator通常会提供更好的性能和更灵活的内存管理能力。

标准库allocator类定义在头文件memory中,它帮助我们将内存分配和对象构造分离开来。它提供一种类型感知的内存分配方法,它分配的内存是原始的、未构造的。

allocator支持的操作,如下:

一些常用的 std 类型

下面是一段标准用法:

int test_allocator_1()
{
    std::allocatorstring> alloc; // 可以分配string的allocator对象
    int n{ 5 };
    auto const p = alloc.allocate(n); // 分配n个未初始化的string

    auto q = p; // q指向最后构造的元素之后的位置
    alloc.construct(q++); // *q为空字符串
    alloc.construct(q++, 10, 'c'); // *q为cccccccccc
    alloc.construct(q++, "hi"); // *q为hi

    std::cout << *p << std::endl; // 正确:使用string的输出运算符
    //std::cout << *q << std::endl; // 灾难:q指向未构造的内存
    std::cout << p[0] << std::endl;
    std::cout << p[1] << std::endl;
    std::cout << p[2] << std::endl;

    while (q != p) {
        alloc.destroy(--q); // 释放我们真正构造的string
    }

    alloc.deallocate(p, n);

    return 0;
}

参考:

1、https://blog.csdn.net/fengbingchun/article/details/78943527

std::recursive_mutex

定义于头文件

class recursive_mutex;  // C++11 起

recursive_mutex 类是同步原语,能用于保护共享数据免受从个多线程同时访问。

recursive_mutex 提供排他性递归所有权语义:

  • 调用方线程在从它成功调用locktry_lock 开始的时期里 占有 recursive_mutex 。此时期间,线程可以进行对locktry_lock 的附加调用。所有权的时期在线程调用unlock 匹配次数时结束。
  • 线程占有 recursive_mutex 时,若其他所有线程试图要求 recursive_mutex 的所有权,则它们将阻塞(对于调用lock )或收到false 返回值(对于调用 try_lock )。
  • 可锁定 recursive_mutex 次数的最大值是未指定的,但抵达该数后,对lock 的调用将抛出std::system_error 而对 try_lock 的调用将返回 false 。

recursive_mutex 在仍为某线程占有时被销毁,则程序行为未定义。 recursive_mutex 类满足互斥 (Mutex) 和标准布局类型(StandardLayoutType) 的所有要求。

一些常用的 std 类型

参考:

1、https://zh.cppreference.com/w/cpp/thread/recursive_mutex

std::condition_variable

#include     // std::condition_variable

std::mutex mtx; // 全局互斥锁.

std::condition_variable cv; // 全局条件变量.

bool ready = false; // 全局标志位.

void do_print_id(int id)
{
    std::unique_lock  lck(mtx);
    while (!ready) // 如果标志位不为 true, 则等待...

        cv.wait(lck); // 当前线程被阻塞, 当全局标志位变为 true 之后,
    // 线程被唤醒, 继续往下执行打印线程编号id.

    std::cout << "thread " << id << '\n';
}

void go()
{
    std::unique_lock  lck(mtx);
    ready = true; // 设置全局标志位为 true.

    cv.notify_all(); // 唤醒所有线程.

}

int main()
{
    std::thread threads[10];
    // spawn 10 threads:
    for (int i = 0; i < 10; ++i)
        threads[i] = std::thread(do_print_id, i);

    std::cout << "10 threads ready to race...\n";
    go(); // go!

  for (auto & th:threads)
        th.join();

    return 0;
}

一些常用的 std 类型

第一种情况下,在线程被阻塞时,该函数会自动调用 lck.unlock() &#x91CA;&#x653E;&#x9501;&#xFF0C;&#x4F7F;&#x5F97;&#x5176;&#x4ED6;&#x88AB;&#x963B;&#x585E;&#x5728;&#x9501;&#x7ADE;&#x4E89;&#x4E0A;&#x7684;&#x7EBF;&#x7A0B;&#x5F97;&#x4EE5;&#x7EE7;&#x7EED;&#x6267;&#x884C;&#x3002;另外,一旦当前线程获得通知(notified,通常是另外某个线程调用 notify_* 唤醒了当前线程),wait() 函数也是自动调用 lck.lock(),使得 lck 的状态和 wait 函数被调用时相同。

在第二种情况下(即设置了 Predicate),pred 相当于资源数量。只有当 pred 条件为 false 时调用 wait() 才会阻塞当前线程,并且在收到其他线程的通知后只有当 pred 为 true 时才会被解除阻塞。

#include     // std::condition_variable

std::mutex mtx;
std::condition_variable cv;

int cargo = 0;
bool shipment_available()
{
    return cargo != 0;
}

// 消费者线程.

void consume(int n)
{
    for (int i = 0; i < n; ++i) {
        std::unique_lock  lck(mtx);
        cv.wait(lck, shipment_available);
        std::cout << cargo << '\n';
        cargo = 0;
    }
}

int main()
{
    std::thread consumer_thread(consume, 10); // 消费者线程.

    // 主线程为生产者线程, 生产 10 个物品.

    for (int i = 0; i < 10; ++i) {
        while (shipment_available())
            std::this_thread::yield();
        std::unique_lock  lck(mtx);
        cargo = i + 1;
        cv.notify_one();
    }

    consumer_thread.join();

    return 0;
}

std::condition_variable_any 介绍

与 std::condition_variable 类似,只不过 std::condition_variable_any 的 wait 函数可以接受任何 lockable 参数,而 std::condition_variable 只能接受 std::unique_lock

参考:

1、https://www.cnblogs.com/haippy/p/3252041.html

Original: https://www.cnblogs.com/tekkaman/p/10313882.html
Author: Tekkaman
Title: 一些常用的 std 类型

原创文章受到原创版权保护。转载请注明出处:https://www.johngo689.com/549340/

转载文章受原作者版权保护。转载请注明原作者出处!

(0)

大家都在看

亲爱的 Coder【最近整理,可免费获取】👉 最新必读书单  | 👏 面试题下载  | 🌎 免费的AI知识星球