MIT6.828——Lab1 partB(麻省理工操作系统课程实验)

Lab1

历时2天,完成了LAB1,完整代码仓库可点击:https://github.com/Elio-yang/MIT6.828

partA 练习

  • *exercise3

MIT6.828——Lab1 partB(麻省理工操作系统课程实验)

gdb指令:

x/Ni addr :反汇编addr处的N条指令

x/Nx addr:打印N字节addr处的内存

b *addr:在addr处设置断点

readsect(): 0x7c7c

bootmain():0x7d25

循环结束的第一条指令是0x7d81处的 call *0x10018,利用 gdb0x10018内存处的值为 0x10000c,故第一条指令是 call 0x10000c。这个地址就是kernel的entry。

At what point does the processor start executing 32-bit code? What exactly causes the switch from 16- to 32-bit mode?

ljmp $PROT_MODE_CSEG,$protcseg这条指令后开始执行32位代码。真正造成切换的,是 CR0PE位被置为,进入了保护模式。

What is the last instruction of the boot loader executed, and what is the first instruction of the kernel it just loaded?

last:

 call *0x10018

first:

f010000c :
f010000c:   66 c7 05 72 04 00 00    movw   $0x1234,0x472

Where is the first instruction of the kernel?

很显然在0x10000c。

How does the boot loader decide how many sectors it must read in order to fetch the entire kernel from disk? Where does it find this information?

都是通过ELF header得知的。

Loading the kernel

首先要注意的是代码的链接地址和加载地址

[En]

The first thing to pay attention to is the link address and load address of the code

使用命令

objdump -h
-x Display all available header information
-f Display entry point
更多用法 man objdump 即可

MIT6.828——Lab1 partB(麻省理工操作系统课程实验)

在kernel中这两者是不同的,但是在之前的boot中

MIT6.828——Lab1 partB(麻省理工操作系统课程实验)

二者是一致的。在 kern/entry.S中有这样一段代码

Turn on paging.

movl    %cr0, %eax
orl $(CR0_PE|CR0_PG|CR0_WP), %eax
movl    %eax, %cr0

这便开启了地址映射,在此之前kernel的VMA和LMA地址处的内存一般是不同的,但是开启分页之后,LMA映射到了VMA。

The Kernel

第一个值得注意的是:开启分页模式,将虚拟地址[0, 4MB)映射到物理地址[0, 4MB),[0xF0000000, 0xF0000000+4MB)映射到[0, 4MB)(/kern/entry.S)

分页模式下的寻址,在Intel手册中也有给出

MIT6.828——Lab1 partB(麻省理工操作系统课程实验)

开启这个模式的代码如下

Load the physical address of entry_pgdir into cr3.  entry_pgdir
is defined in entrypgdir.c.

movl    $(RELOC(entry_pgdir)), %eax
movl    %eax, %cr3
Turn on paging.

movl    %cr0, %eax
orl $(CR0_PE|CR0_PG|CR0_WP), %eax
movl    %eax, %cr0

关于地址的映射在 kern/entrypgdir.c有代码实现

__attribute__((__aligned__(PGSIZE)))
pde_t entry_pgdir[NPDENTRIES] = {
    // Map VA's [0, 4MB) to PA's [0, 4MB)
    [0]
        = ((uintptr_t)entry_pgtable - KERNBASE) + PTE_P,
    // Map VA's [KERNBASE, KERNBASE+4MB) to PA's [0, 4MB)
    [KERNBASE>>PDXSHIFT]
        = ((uintptr_t)entry_pgtable - KERNBASE) + PTE_P + PTE_W
};

编译器分配的空间是强制性4kB页对齐的。 pgdir是一个1024项的数组。这里可以不用详细了解原理 For now, you don't have to understand the details of how this works, just the effect that it accomplishes.

  • *exercise7

MIT6.828——Lab1 partB(麻省理工操作系统课程实验)

在开启寻呼之前,两个地址的内容不一致,其次是地址映射,两者的内容是相同的。注释掉

[En]

Before opening paging, the contents of the two addresses are inconsistent, followed by address mapping, and the contents of the two are the same. Comment out

movl %eax, %cr0程序会崩溃。

Formated Printing to the Console

第一个是几个函数的调用关系。

[En]

The first is the calling relationship of several functions.

MIT6.828——Lab1 partB(麻省理工操作系统课程实验)

然后练习题

  • *exercise8

MIT6.828——Lab1 partB(麻省理工操作系统课程实验)

这个文件就是 lib/printfmt.c

// (unsigned) octal
case 'o':
    // Replace this with your code.

    num=getuint(&ap,lflag);
    base=8;
    goto number;

对照上下文很容易补全。

下面是回答问题:

Explain the interface between printf.c and console.c. Specifically, what function does console.c export? How is this function used by printf.c?

对照上文调用关系图即可

Explain the following from console.c

if (crt_pos >= CRT_SIZE) {
    int i;
    memmove(crt_buf, crt_buf + CRT_COLS, (CRT_SIZE - CRT_COLS) *sizeof(uint16_t));
    for (i = CRT_SIZE - CRT_COLS; i < CRT_SIZE; i++)
        crt_buf[i] = 0x0700 | ' ';
    crt_pos -= CRT_COLS;
}

首先文本模式最多能显示 25*80个字符,即25行每行80个。此处

// console.h
#define CRT_ROWS    25
#define CRT_COLS    80
#define CRT_SIZE    (CRT_ROWS * CRT_COLS)

因此,这一段涉及屏幕之外的实践:丢弃最上面的一行,整体上移一行。

[En]

Therefore, this paragraph deals with the practice beyond a screen: discard the top line and move up one line as a whole.

MIT6.828——Lab1 partB(麻省理工操作系统课程实验)

For the following questions you might wish to consult the notes for Lecture 2. These notes cover GCC’s calling convention on the x86.

Trace the execution of the following code step-by-step:

int x = 1, y = 3, z = 4;
cprintf("x %d, y %x, z %d\n", x, y, z);
  • In the call to cprintf(), to what does fmt point? To what does ap point?

  • List (in order of execution) each call to cons_putc, va_arg, and vcprintf. For cons_putc, list its argument as well. For va_arg, list what ap points to before and after the call. For vcprintf list the values of its two arguments.

GCC 函数调用约定是参数从右往左入栈。此处 fmt指向的就是第一个参数的位置。而 ap指向第一个可变参数,也就是第二个参数 x的位置。关于变参数,JOS使用的是GCC builtin来实现的。其实现可以用如下代码进行大致说明(不是严谨的完整实现):

#define va_start(list,param_1st)   ( list = (va_list)¶m1+ sizeof(param_1st) )
#define va_arg(list,type)   ( (type *) ( list += sizeof(type) ) )[-1]
#define va_end(list) ( list = (va_list)0 )

因此:

va_list:即 char*

va_start:获取第一个可变参数的地址

va_arg:返回指向下一个参数的指针

va_end:清空参数列表

Run the following code.

    unsigned int i = 0x00646c72;
    cprintf("H%x Wo%s", 57616, &i);

What is the output? Explain how this output is arrived at in the step-by-step manner of the previous exercise.

Here’s an ASCII tablethat maps bytes to characters.

The output depends on that fact that the x86 is little-endian. If the x86 were instead big-endian what would you set i to in order to yield the same output? Would you need to change 57616 to a different value?

Here’s a description of little- and big-endian and a more whimsical description.

把这段代码加入 init.c中,运行 make qemu,结果如下

MIT6.828——Lab1 partB(麻省理工操作系统课程实验)

0xe110=57616这很好解释,查阅ASCII表,得知

00(\0) 64(d) 6c(l) 72(r)

显然这是由于小端模式而使用的一个数。为了证明这一点,可以输出 &i内存处的字节。将下面这段代码放在上面打印代码的后面

cprintf("addr of i: %p\n",&i);
char *p=(char*)&i;
for(int i=0;i

输出结果如下:

MIT6.828——Lab1 partB(麻省理工操作系统课程实验)

In the following code, what is going to be printed after 'y='? (note: the answer is not a specific value.) Why does this happen?

 cprintf("x=%d y=%d", 3);

运行结果如下

MIT6.828——Lab1 partB(麻省理工操作系统课程实验)

显然y的值并不一定固定,他就是把内存中那个位置的数拿来充当了第二个参数。

Let’s say that GCC changed its calling convention so that it pushed arguments on the stack in declaration order, so that the last argument is pushed last. How would you have to change cprintf or its interface so that it would still be possible to pass it a variable number of arguments?

更改了入栈方式,相应地更改 va_startva_start即可。

The Stack

先看这个练习

  • *exercise9

MIT6.828——Lab1 partB(麻省理工操作系统课程实验)

entry.S中可以找到如下代码

where the stack is set.

Clear the frame pointer register (EBP)
so that once we get into debugging C code,
stack backtraces will be terminated properly.

movl    $0x0,%ebp           # nuke frame pointer
Set the stack pointer
movl    $(bootstacktop),%esp
now to C code
call    i386_init

利用 gdb得知, movl $(bootstacktop),%esp会被编译为 movl $0xf0110000,%esp。因此栈何时初始化,栈放在哪儿都清楚了。继续看代码

###################################################################
boot stack
###################################################################
    .p2align    PGSHIFT     # force page alignment
    .globl      bootstack
bootstack:
    .space      KSTKSIZE
    .globl      bootstacktop

这便开辟了栈的大小,即 32KB。栈由高地址向低地址增长。

下面,关于函数的调用过程,做一个总结,可以参考[CSAPP,p164]。

这是从课件ppt截取的两页

MIT6.828——Lab1 partB(麻省理工操作系统课程实验)

MIT6.828——Lab1 partB(麻省理工操作系统课程实验)

对于函数的调用,通常会发生以下操作:

[En]

With regard to the call of a function, the following actions generally occur:

  1. 函数调用者(caller)将参数入栈,按照 从右到左的顺序入栈
  2. call指令会 自动将当前 %eip(指向call的后面一条指令)入栈,ret指令将 自动从栈中弹出该值到eip寄存器
  3. 被调用函数(callee)负责:将%ebp入栈,%esp的值赋给%ebp。

因此,该函数将从两条类似的指令开始。

[En]

So the function will start with two similar instructions.

push %ebp
mov %esp,%ebp

因此整个 调用链差不多可以描述成如下形式

MIT6.828——Lab1 partB(麻省理工操作系统课程实验)

来到下一个练习

  • *exercise10

MIT6.828——Lab1 partB(麻省理工操作系统课程实验)

每次call之后会干什么,上文已经分析了。至于每次递归入栈的字,伪代码可以表示为

push %eip
push %ebp
push %esi
push %ebx

共计 0x10B。

  • *exercise11

MIT6.828——Lab1 partB(麻省理工操作系统课程实验)

需要我们更改 mom_backtrace()函数,达到的效果如下:

MIT6.828——Lab1 partB(麻省理工操作系统课程实验)

题目中已经说明,获得 %ebp的函数就是 read_ebp()。那么编码工作应该很好完成了(利用调用链中 %ebp的链)

int
mon_backtrace(int argc, char **argv, struct Trapframe *tf)
{
    // Your code here.
    uint32_t *ebp=(uint32_t*)read_ebp();
    while(ebp!=NULL){
        cprintf("ebp %8x  eip %8x  args %08x %08x %08x %08x %08x\n",
            ebp,ebp[1],ebp[2],ebp[3],ebp[4],ebp[5],ebp[6]);
        ebp=(uint32_t *)(*ebp);
    }
    return 0;
}

运行结果如下

MIT6.828——Lab1 partB(麻省理工操作系统课程实验)
  • *exercise12

MIT6.828——Lab1 partB(麻省理工操作系统课程实验)

练习12的任务有三个:

  1. 搞清楚 __STAB_*
  2. 添加命令 backtrace
  3. 完善 mon_backtrace

  4. 任务一 根据提示,查看这几个文件,首先是 kernel.ld

.stab : {
                PROVIDE(__STAB_BEGIN__ = .);
                *(.stab);
                PROVIDE(__STAB_END__ = .);
                BYTE(0)         /* Force the linker to allocate space
                                   for this section */
        }

.stabstr : {
                PROVIDE(__STABSTR_BEGIN__ = .);
                *(.stabstr);
                PROVIDE(__STABSTR_END__ = .);
                BYTE(0)         /* Force the linker to allocate space
                                   for this section */
        }

可以知道 .stab.stabstr应该是两个段。 接着 objdump -h obj/kern/kernel

MIT6.828——Lab1 partB(麻省理工操作系统课程实验)
&#x7136;&#x540E;&#x662F; -G obj/kern/kernel

MIT6.828——Lab1 partB(麻省理工操作系统课程实验)
&#x6267;&#x884C;&#x540E;&#x9762;&#x7684;&#x64CD;&#x4F5C;&#x4EE5;&#x540E;&#xFF0C;&#x5927;&#x81F4;&#x53EF;&#x4EE5;&#x77E5;&#x9053;&#x8FD9;&#x662F;&#x4E00;&#x4E2A;&#x6BB5;&#xFF0C;&#x5305;&#x542B;&#x4E86;&#x8C03;&#x8BD5;&#x4FE1;&#x606F;(&#x7B26;&#x53F7;&#x8868;)&#x3002;&#x7EC6;&#x8282;&#x53EF;&#x4EE5;&#x4E0D;&#x7528;&#x592A;&#x4E86;&#x89E3;&#x3002;&#x63A5;&#x7740;&#x627E;&#x5230;.h&#xFF0C;&#x5176;&#x4E2D;

MIT6.828——Lab1 partB(麻省理工操作系统课程实验)
&#x8FD9;&#x4E24;&#x9879;&#x4FBF;&#x662F;&#x540E;&#x6587;&#x7F16;&#x7801;&#x5BFB;&#x627E;&#x884C;&#x53F7;&#x65F6;&#x9700;&#x8981;&#x7684;&#x3002;&#x4E0B;&#x9762;&#x5F00;&#x59CB;&#x4EFB;&#x52A1;&#x4E8C;&#x548C;&#x4E09;
  • 任务二 题目中提示了需要使用 debuginfo_eip,查找这个函数发现,他会将需要的信息存到类型为 struct Eipdebuginfo的结构体中。查看该结构体定义(kern/kdebebug.h)
// Debug information about a particular instruction pointer
struct Eipdebuginfo {
    const char *eip_file;       // Source code filename for EIP
    int eip_line;               // Source code linenumber for EIP

    const char *eip_fn_name;    // Name of function containing EIP
                                //  - Note: not null terminated!

    int eip_fn_namelen;     // Length of function name
    uintptr_t eip_fn_addr;      // Address of start of function
    int eip_fn_narg;        // Number of function arguments
};

因此只需要使用 debuginfo_eip填充该结构体,再输出信息即可。

static struct Command commands[] = {
    { "help", "Display this list of commands", mon_help },
    { "kerninfo", "Display information about the kernel", mon_kerninfo },
    { "backtrace", "Show stack backtrace",mon_stacktrace}
};
//......

int
for_stack(int argc,char **argv,struct Trapframe *tf)
{
    uint32_t *ebp=(uint32_t*)read_ebp();
    while(ebp!=NULL){
        struct Eipdebuginfo info;
        uint32_t eip = ebp[1];
        debuginfo_eip((int)eip, &info);
        cprintf("  ebp %8x  eip %8x  args %08x %08x %08x %08x %08x\n",
            ebp,ebp[1],ebp[2],ebp[3],ebp[4],ebp[5],ebp[6]);
        const  char* filename=(&info)->eip_file;
        int line = (&info)->eip_line;
        const char * not_null_ter_fname=(&info)->eip_fn_name;
        int offset = (int)(eip)-(int)((&info)->eip_fn_addr);
        cprintf("        %s:%d:  %.*s+%d\n",filename,line,info.eip_fn_namelen,not_null_ter_fname,offset);
        ebp=(uint32_t *)(*ebp);
    }
    return 0;
}
int
mon_stacktrace(int argc,char **argv,struct Trapframe *tf)
{
    cprintf("Stack backtrace:\n");
    return for_stack(argc,argv,tf);
}

其中关于文件行号的查找实现,对照上下文就能实现,注意 N_SLINE这就是之前说 stab时提到的一个有用的属性。

// Search within [lline, rline] for the line number stab.

// If found, set info->eip_line to the right line number.

// If not found, return -1.

//
// Hint:
//  There's a particular stabs type used for line numbers.

//  Look at the STABS documentation and  to find
//  which one.

// Your code here.

stab_binsearch(stabs, &lline, &rline, N_SLINE, addr);
if(llineeip_line=stabs[lline].n_desc;
}else{
    return -1;
}

运行结果如下:

MIT6.828——Lab1 partB(麻省理工操作系统课程实验)
&#x4E4B;&#x540E;&#x8FD0;&#x884C;&#x8BC4;&#x5206;&#x7A0B;&#x5E8F;

MIT6.828——Lab1 partB(麻省理工操作系统课程实验)

至此, Lab1完结。完整代码仓库可点击:https://github.com/Elio-yang/MIT6.828

Original: https://www.cnblogs.com/oasisyang/p/15365482.html
Author: OasisYang
Title: MIT6.828——Lab1 partB(麻省理工操作系统课程实验)

原创文章受到原创版权保护。转载请注明出处:https://www.johngo689.com/524485/

转载文章受原作者版权保护。转载请注明原作者出处!

(0)

大家都在看

  • 聊斋-河间生

    人的善恶在转瞬之间就可以改变,发现错误时往往已经差之千里了,但是发现错误及时改正这不也是很美好的一件事情么?河间生就是讲了这么一件事情。 主角简介:河间某生,家里比较富裕,烧火用的…

    Linux 2023年6月14日
    0121
  • [20211105]索引分裂 块清除 日志增加.txt

    [20211105]索引分裂 块清除 日志增加.txt –//题目起的有点怪,只是我昨天在测试时遇到的怪问题,我通过测试环境演示出来。–//当非主键索引发生…

    Linux 2023年6月13日
    089
  • python爬虫配置IP代理池(ProxyPool)

    关注我的公众号【靠谱杨的挨踢生活】回复 ProxyPool可以免费获取网盘链接。也可自行搜索下载:https://github.com/Python3WebSpider/Proxy…

    Linux 2023年6月14日
    0104
  • 【Linux】在Linux下文件io使用(二)

    在linux下,一切皆文件。当文件被打开时,会返回文件描述符用于操作该文件,从shell中运行一个进程,默认会有3个文件描述符存在(0、1、2); 0表示标准输入,1表示标准输出,…

    Linux 2023年6月13日
    0110
  • Centos7 找回root密码

    在开机界面,按”e”进入编辑界面 按”e”进图下图界面后,找到开头为”linux16″行,在行后面加入 &#…

    Linux 2023年5月27日
    0139
  • redis

    字符串:类似vector,有空闲的空间 capacity和len,当长度小于1M时,每次扩容加倍,大于1M,每次扩容1M,最大512M hash: 相当于c++ unordered…

    Linux 2023年5月28日
    088
  • DHCP超级作用域

    404. 抱歉,您访问的资源不存在。 可能是网址有误,或者对应的内容被删除,或者处于私有状态。 代码改变世界,联系邮箱 contact@cnblogs.com 园子的商业化努力-困…

    Linux 2023年6月7日
    085
  • 了解GFS

    参考: https://wenku.baidu.com/view/4392293517791711cc7931b765ce0508763275f2.html 论文翻译 https:…

    Linux 2023年6月7日
    0105
  • 斐波那契数列前1000项

    斐波那契数列前1000项 {1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597,2584,4181,6765,10946,177…

    Linux 2023年6月6日
    090
  • JuiceFS 缓存预热详解

    缓存预热是一个比较常见的概念,相信很多小伙伴都有所了解。对于 JuiceFS 来说,缓存预热就是将需要操作的数据预先从对象存储拉取到本地,从而获得与使用本地存储类似的性能表现。 缓…

    Linux 2023年6月14日
    086
  • 当前硬件版本不支持设备“nvme”。 vmx 未能启动虚拟机 2022-06-30T06:44:04.446Z In(05)+

    由于系统发生了dwm.exe内存泄露问题,为了处理就更新了一下系统,再 我打开VMware的时候运行不了虚拟机 再此记录一下: 发生此问题是硬件兼容性问题,解决办法: 根据VMMw…

    Linux 2023年6月8日
    0256
  • 操作系统实现-printk

    博客网址:www.shicoder.top微信:18223081347欢迎加群聊天 :452380935 这一次我们来实现最基础,也是最常见的函数 print,大家都知道这个是可变…

    Linux 2023年6月13日
    0105
  • 安装Redis6.x

    gcc安装完毕以后,接下来可以按照redis了,解压redis6安装包 tar -zxvf redis-6.0.9.tar.gz * 查看日志,表示运行成功 vim /usr/lo…

    Linux 2023年5月28日
    070
  • zabbix部署

    zabbix zabbix zabbix介绍 zabbix特点 zabbix部署 zabbix介绍 zabbix是一个基于WEB界面的提供分布式系统监视以及网络监视功能的企业级的开…

    Linux 2023年6月13日
    0131
  • Linux系统Oracle常见操作

    1.1 登录默认数据库 首先切换到oracle用户,用数据库默认管理员登录。 [root@tsm-zh01 ~]# su – oracle [oracle@redhat ~]$ l…

    Linux 2023年6月6日
    075
  • Feign 进行rpc 调用时使用ribbon负载均衡源码解析

    转载请注明出处: Feign客户端接口的动态代理生成是基于JDK的动态代理来实现的,那么在所有的方法调用的时候最终都会走InvocationHandler接口的实现,默认就是Ref…

    Linux 2023年6月14日
    072
亲爱的 Coder【最近整理,可免费获取】👉 最新必读书单  | 👏 面试题下载  | 🌎 免费的AI知识星球