推荐算法分类

推荐算法大致可以分为三类:基于内容的推荐算法、协同过滤推荐算法和基于知识的推荐算法。

1、基于内容的推荐算法,原理是用户喜欢和自己关注过的Item在内容上类似的Item,比如你看了哈利波特I,基于内容的推荐算法发现哈利波特II-VI,与你以前观看的在内容上面(共有很多关键词)有很大关联性,就把后者推荐给你,这种方法可以避免Item的冷启动问题(冷启动:如果一个Item从没有被关注过,其他推荐算法则很少会去推荐,但是基于内容的推荐算法可以分析Item之间的关系,实现推荐),弊端在于推荐的Item可能会重复,典型的就是新闻推荐,如果你看了一则关于MH370的新闻,很可能推荐的新闻和你浏览过的,内容一致;另外一个弊端则是对于一些多媒体的推荐(比如音乐、电影、图片等)由于很难提内容特征,则很难进行推荐,一种解决方式则是人工给这些Item打标签。

2、协同过滤算法,原理是用户喜欢那些具有相似兴趣的用户喜欢过的商品,比如你的朋友喜欢电影哈利波特I,那么就会推荐给你,这是最简单的基于用户的协同过滤算法(user-based collaboratIve filtering),还有一种是基于Item的协同过滤算法(item-based collaborative filtering),

这两种方法都是将用户的所有数据读入到内存中进行运算的,因此成为Memory-based Collaborative Filtering,另一种则是Model-based collaborative filtering,包括Aspect Model,pLSA,LDA,聚类,SVD

Original: https://blog.csdn.net/jxq0816/article/details/103198596
Author: AI算法攻城狮
Title: 推荐算法分类

原创文章受到原创版权保护。转载请注明出处:https://www.johngo689.com/9735/

转载文章受原作者版权保护。转载请注明原作者出处!

(0)

大家都在看

免费咨询
免费咨询
扫码关注
扫码关注
联系站长

站长Johngo!

大数据和算法重度研究者!

持续产出大数据、算法、LeetCode干货,以及业界好资源!

2022012703491714

微信来撩,免费咨询:xiaozhu_tec

分享本页
返回顶部