高等数学(第七版)同济大学 习题12-3 个人解答

高等数学(第七版)同济大学 习题12-3

1. 求下列幂级数的收敛区间: \begin{aligned}&1. \ 求下列幂级数的收敛区间:&\end{aligned}​1.求下列幂级数的收敛区间:​​

( 1 ) x + 2 x 2 + 3 x 3 + ⋅ ⋅ ⋅ + n x n + ⋅ ⋅ ⋅ ; ( 2 ) 1 − x + x 2 2 2 + ⋅ ⋅ ⋅ + ( − 1 ) n x n n 2 + ⋅ ⋅ ⋅ ; ( 3 ) x 2 + x 2 2 ⋅ 4 + x 3 2 ⋅ 4 ⋅ 6 + ⋅ ⋅ ⋅ + x n 2 ⋅ 4 ⋅ ⋅ ⋅ ⋅ ⋅ ( 2 n ) + ⋅ ⋅ ⋅ ; ( 4 ) x 1 ⋅ 3 + x 2 2 ⋅ 3 2 + x 3 3 ⋅ 3 3 + ⋅ ⋅ ⋅ + x n n ⋅ 3 n + ⋅ ⋅ ⋅ ; ( 5 ) 2 2 x + 2 2 5 x 2 + 2 3 10 x 3 + ⋅ ⋅ ⋅ + 2 n n 2 + 1 x n + ⋅ ⋅ ⋅ ; ( 6 ) ∑ n = 1 ∞ ( − 1 ) n x 2 n + 1 2 n + 1 ; ( 7 ) ∑ n = 1 ∞ 2 n − 1 2 n x 2 n − 2 ; ( 8 ) ∑ n = 1 ∞ ( x − 5 ) n n . \begin{aligned} &\ \ (1)\ \ x+2x^2+3x^3+\cdot\cdot\cdot+nx^n+\cdot\cdot\cdot;\\ &\ \ (2)\ \ 1-x+\frac{x^2}{2^2}+\cdot\cdot\cdot+(-1)^n\frac{x^n}{n^2}+\cdot\cdot\cdot;\\ &\ \ (3)\ \ \frac{x}{2}+\frac{x^2}{2\cdot 4}+\frac{x^3}{2\cdot 4\cdot 6}+\cdot\cdot\cdot+\frac{x^n}{2\cdot 4\cdot\ \cdot\cdot\cdot\ \cdot(2n)}+\cdot\cdot\cdot;\\ &\ \ (4)\ \ \frac{x}{1\cdot 3}+\frac{x^2}{2\cdot 3^2}+\frac{x^3}{3\cdot 3^3}+\cdot\cdot\cdot+\frac{x^n}{n\cdot 3^n}+\cdot\cdot\cdot;\\ &\ \ (5)\ \ \frac{2}{2}x+\frac{2^2}{5}x^2+\frac{2^3}{10}x^3+\cdot\cdot\cdot+\frac{2^n}{n^2+1}x^n+\cdot\cdot\cdot;\\ &\ \ (6)\ \ \sum_{n=1}^{\infty}(-1)^n\frac{x^{2n+1}}{2n+1};\\ &\ \ (7)\ \ \sum_{n=1}^{\infty}\frac{2n-1}{2^n}x^{2n-2};\\ &\ \ (8)\ \ \sum_{n=1}^{\infty}\frac{(x-5)^n}{\sqrt{n}}. & \end{aligned}​(1 )x +2 x 2 +3 x 3 +⋅⋅⋅+n x n +⋅⋅⋅;(2 )1 −x +2 2 x 2 ​+⋅⋅⋅+(−1 )n n 2 x n ​+⋅⋅⋅;(3 )2 x ​+2 ⋅4 x 2 ​+2 ⋅4 ⋅6 x 3 ​+⋅⋅⋅+2 ⋅4 ⋅⋅⋅⋅⋅(2 n )x n ​+⋅⋅⋅;(4 )1 ⋅3 x ​+2 ⋅3 2 x 2 ​+3 ⋅3 3 x 3 ​+⋅⋅⋅+n ⋅3 n x n ​+⋅⋅⋅;(5 )2 2 ​x +5 2 2 ​x 2 +10 2 3 ​x 3 +⋅⋅⋅+n 2 +1 2 n ​x n +⋅⋅⋅;(6 )n =1 ∑∞​(−1 )n 2 n +1 x 2 n +1 ​;(7 )n =1 ∑∞​2 n 2 n −1 ​x 2 n −2 ;(8 )n =1 ∑∞​n ​(x −5 )n ​.​​

解:

( 1 ) 因为 lim ⁡ n → ∞ ∣ a n + 1 ∣ ∣ a n ∣ = lim ⁡ n → ∞ n + 1 n = 1 ,所以收敛半径为 1 ,收敛区间为 ( − 1 , 1 ) . ( 2 ) 当 n ≥ 1 时, ∣ a n + 1 ∣ ∣ a n ∣ = 1 ( n + 1 ) 2 1 n 2 = ( n n + 1 ) 2 , lim ⁡ n → ∞ ∣ a n + 1 ∣ ∣ a n ∣ = 1 ,所以收敛半径为 1 ,收敛区间为 ( − 1 , 1 ) . ( 3 ) 因为 lim ⁡ n → ∞ ∣ a n + 1 ∣ ∣ a n ∣ = lim ⁡ n → ∞ 1 2 ( n + 1 ) = 0 ,所以收敛半径为 + ∞ ,收敛区间为 ( − ∞ , + ∞ ) . ( 4 ) 因为 lim ⁡ n → ∞ ∣ a n + 1 ∣ ∣ a n ∣ = lim ⁡ n → ∞ 1 3 ⋅ n n + 1 = 1 3 ,所以收敛半径为 3 ,收敛区间为 ( − 3 , 3 ) . ( 5 ) 因为 lim ⁡ n → ∞ ∣ a n + 1 ∣ ∣ a n ∣ = lim ⁡ n → ∞ 2 ⋅ n 2 + 1 ( n + 1 ) 2 + 1 = 2 ,所以收敛半径为 1 2 ,收敛区间为 ( − 1 2 , 1 2 ) . ( 6 ) 将 ( − 1 ) n x 2 n + 1 2 n + 1 看作数项级数的一般项 u n ,因为 lim ⁡ n → ∞ ∣ u n + 1 ∣ ∣ u n ∣ = lim ⁡ n → ∞ 2 n + 1 2 n + 3 ∣ x ∣ 2 = ∣ x ∣ 2 , 当 ∣ x ∣ < 1 时,级数绝对收敛;当 ∣ x ∣ > 1 时,由于一般项 u n ↛ 0 ( n → ∞ ) ,级数发散, 所以该级数收敛半径为 1 ,收敛区间为 ( − 1 , 1 ) . ( 7 ) 令 t = x 2 ,原式 = ∑ n = 1 ∞ 2 n − 1 2 n t n − 1 ,因为 lim ⁡ n → ∞ ∣ a n + 1 ∣ ∣ a n ∣ = lim ⁡ n → ∞ 1 2 ⋅ 2 n + 1 2 n − 1 = 1 2 ,所以该级数的收敛半径为 2 , 因此,原级数的收敛半径为 2 ,收敛区间为 ( − 2 , 2 ) . ( 8 ) 因为 lim ⁡ n → ∞ ∣ a n + 1 ∣ ∣ a n ∣ = lim ⁡ n → ∞ n n + 1 = 1 ,所以该级数收敛半径为 1 ,当 ∣ x − 5 ∣ < 1 时,级数收敛, 当 ∣ x − 5 ∣ > 1 时,级数发散,因此该级数收敛区间为 ( 4 , 6 ) . \begin{aligned} &\ \ (1)\ 因为\lim_{n \rightarrow \infty}\frac{|a_{n+1}|}{|a_n|}=\lim_{n \rightarrow \infty}\frac{n+1}{n}=1,所以收敛半径为1,收敛区间为(-1, \ 1).\\ &\ \ (2)\ 当n \ge 1时,\frac{|a_{n+1}|}{|a_n|}=\frac{\frac{1}{(n+1)^2}}{\frac{1}{n^2}}=\left(\frac{n}{n+1}\right)^2,\lim_{n\rightarrow \infty}\frac{|a_{n+1}|}{|a_n|}=1,所以收敛半径为1,收敛区间为(-1, \ 1).\\ &\ \ (3)\ 因为\lim_{n \rightarrow \infty}\frac{|a_{n+1}|}{|a_n|}=\lim_{n \rightarrow \infty}\frac{1}{2(n+1)}=0,所以收敛半径为+\infty,收敛区间为(-\infty, \ +\infty).\\ &\ \ (4)\ 因为\lim_{n \rightarrow \infty}\frac{|a_{n+1}|}{|a_n|}=\lim_{n \rightarrow \infty}\frac{1}{3}\cdot \frac{n}{n+1}=\frac{1}{3},所以收敛半径为3,收敛区间为(-3, \ 3).\\ &\ \ (5)\ 因为\lim_{n \rightarrow \infty}\frac{|a_{n+1}|}{|a_n|}=\lim_{n \rightarrow \infty}2 \cdot \frac{n^2+1}{(n+1)^2+1}=2,所以收敛半径为\frac{1}{2},收敛区间为\left(-\frac{1}{2}, \ \frac{1}{2}\right).\\ &\ \ (6)\ 将(-1)^n\frac{x^{2n+1}}{2n+1}看作数项级数的一般项u_n,因为\lim_{n \rightarrow \infty}\frac{|u_{n+1}|}{|u_n|}=\lim_{n \rightarrow \infty}\frac{2n+1}{2n+3}|x|^2=|x|^2,\\ &\ \ \ \ \ \ \ \ 当|x| \lt 1时,级数绝对收敛;当|x| \gt 1时,由于一般项u_n \nrightarrow 0\ (n \rightarrow \infty),级数发散,\\ &\ \ \ \ \ \ \ \ 所以该级数收敛半径为1,收敛区间为(-1, \ 1).\\ &\ \ (7)\ 令t=x^2,原式=\sum_{n=1}^{\infty}\frac{2n-1}{2^n}t^{n-1},因为\lim_{n \rightarrow \infty}\frac{|a_{n+1}|}{|a_n|}=\lim_{n \rightarrow \infty}\frac{1}{2}\cdot \frac{2n+1}{2n-1}=\frac{1}{2},所以该级数的收敛半径为2,\\ &\ \ \ \ \ \ \ \ 因此,原级数的收敛半径为\sqrt{2},收敛区间为(-\sqrt{2}, \ \sqrt{2}).\\ &\ \ (8)\ 因为\lim_{n \rightarrow \infty}\frac{|a_{n+1}|}{|a_n|}=\lim_{n \rightarrow \infty}\frac{\sqrt{n}}{\sqrt{n+1}}=1,所以该级数收敛半径为1,当|x-5| \lt 1时,级数收敛,\\ &\ \ \ \ \ \ \ \ 当|x-5| \gt 1时,级数发散,因此该级数收敛区间为(4, \ 6). & \end{aligned}​(1 )因为n →∞lim ​∣a n ​∣∣a n +1 ​∣​=n →∞lim ​n n +1 ​=1 ,所以收敛半径为1 ,收敛区间为(−1 ,1 ).(2 )当n ≥1 时,∣a n ​∣∣a n +1 ​∣​=n 2 1 ​(n +1 )2 1 ​​=(n +1 n ​)2 ,n →∞lim ​∣a n ​∣∣a n +1 ​∣​=1 ,所以收敛半径为1 ,收敛区间为(−1 ,1 ).(3 )因为n →∞lim ​∣a n ​∣∣a n +1 ​∣​=n →∞lim ​2 (n +1 )1 ​=0 ,所以收敛半径为+∞,收敛区间为(−∞,+∞).(4 )因为n →∞lim ​∣a n ​∣∣a n +1 ​∣​=n →∞lim ​3 1 ​⋅n +1 n ​=3 1 ​,所以收敛半径为3 ,收敛区间为(−3 ,3 ).(5 )因为n →∞lim ​∣a n ​∣∣a n +1 ​∣​=n →∞lim ​2 ⋅(n +1 )2 +1 n 2 +1 ​=2 ,所以收敛半径为2 1 ​,收敛区间为(−2 1 ​,2 1 ​).(6 )将(−1 )n 2 n +1 x 2 n +1 ​看作数项级数的一般项u n ​,因为n →∞lim ​∣u n ​∣∣u n +1 ​∣​=n →∞lim ​2 n +3 2 n +1 ​∣x ∣2 =∣x ∣2 ,当∣x ∣<1 时,级数绝对收敛;当∣x ∣>1 时,由于一般项u n ​↛0 (n →∞),级数发散,所以该级数收敛半径为1 ,收敛区间为(−1 ,1 ).(7 )令t =x 2 ,原式=n =1 ∑∞​2 n 2 n −1 ​t n −1 ,因为n →∞lim ​∣a n ​∣∣a n +1 ​∣​=n →∞lim ​2 1 ​⋅2 n −1 2 n +1 ​=2 1 ​,所以该级数的收敛半径为2 ,因此,原级数的收敛半径为2 ​,收敛区间为(−2 ​,2 ​).(8 )因为n →∞lim ​∣a n ​∣∣a n +1 ​∣​=n →∞lim ​n +1 ​n ​​=1 ,所以该级数收敛半径为1 ,当∣x −5∣<1 时,级数收敛,当∣x −5∣>1 时,级数发散,因此该级数收敛区间为(4 ,6 ).​​

2. 利用逐项求导或逐项积分,求下列级数的和函数: \begin{aligned}&2. \ 利用逐项求导或逐项积分,求下列级数的和函数:&\end{aligned}​2.利用逐项求导或逐项积分,求下列级数的和函数:​​

( 1 ) ∑ n = 1 ∞ n x n − 1 ; ( 2 ) ∑ n = 1 ∞ x 4 n + 1 4 n + 1 ; ( 3 ) x + x 3 3 + x 5 5 + ⋅ ⋅ ⋅ + x 2 n − 1 2 n − 1 + ⋅ ⋅ ⋅ ; ( 4 ) ∑ n = 1 ∞ ( n + 2 ) x n + 3 . \begin{aligned} &\ \ (1)\ \ \sum_{n=1}^{\infty}nx^{n-1};\\ &\ \ (2)\ \ \sum_{n=1}^{\infty}\frac{x^{4n+1}}{4n+1};\\ &\ \ (3)\ \ x+\frac{x^3}{3}+\frac{x^5}{5}+\cdot\cdot\cdot+\frac{x^{2n-1}}{2n-1}+\cdot\cdot\cdot;\\ &\ \ (4)\ \ \sum_{n=1}^{\infty}(n+2)x^{n+3}. & \end{aligned}​(1 )n =1 ∑∞​n x n −1 ;(2 )n =1 ∑∞​4 n +1 x 4 n +1 ​;(3 )x +3 x 3 ​+5 x 5 ​+⋅⋅⋅+2 n −1 x 2 n −1 ​+⋅⋅⋅;(4 )n =1 ∑∞​(n +2 )x n +3 .​​

解:

( 1 ) 该级数的收敛半径为 1 ,当 − 1 < x < 1 时, ∫ 0 x ( ∑ n = 1 ∞ n x n − 1 ) ) d x = ∑ n = 1 ∞ ( ∫ 0 x n x n − 1 d x ) = ∑ n = 1 ∞ x n = x 1 − x , 上式两端对 x 求导,得 ∑ n = 1 ∞ n x n − 1 = 1 ( 1 − x ) 2 ,又因原级数在 x = ± 1 处发散,所以和函数 s ( x ) = 1 ( 1 − x ) 2 ( − 1 < x < 1 ) . ( 2 ) 该级数的收敛半径为 1 ,当 − 1 < x < 1 时, ( ∑ n = 1 ∞ x 4 n + 1 4 n + 1 ) ′ = ∑ n = 1 ∞ ( x 4 n + 1 4 n + 1 ) ′ = ∑ n = 1 ∞ x 4 n = x 4 1 − x 4 , 上式两端分别从 0 到 x 积分,由于 ∑ n = 1 ∞ x 4 n + 1 4 n + 1 在 x = 0 处收敛于 0 ,所以得 ∑ n = 1 ∞ x 4 n + 1 4 n + 1 = ∫ 0 x x 4 1 − x 4 d x = ∫ 0 x ( − 1 + 1 2 ⋅ 1 1 + x 2 + 1 2 ⋅ 1 1 − x 2 ) d x = 1 4 l n 1 + x 1 − x + 1 2 a r c t a n x − x , 又因原级数在 x = ± 1 处发散,所以和函数 s ( x ) = 1 4 l n 1 + x 1 − x + 1 2 a r c t a n x − x ( − 1 < x < 1 ) . ( 3 ) 级数为 ∑ n = 1 ∞ x 2 n − 1 2 n − 1 ,收敛半径为 1 ,当 − 1 < x < 1 时, ( ∑ n = 1 ∞ x 2 n − 1 2 n − 1 ) ′ = ∑ n = 1 ∞ x 2 n − 2 = 1 1 − x 2 , 上式两端分别从 0 到 x 积分,且 ∑ n = 1 ∞ x 2 n − 1 2 n − 1 在 x = 0 处收敛于 0 ,所以得 ∑ n = 1 ∞ x 2 n − 1 2 n − 1 = ∫ 0 x 1 1 − x 2 d x = 1 2 l n 1 + x 1 − x ,又因原级数在 x = ± 1 处发散,所以和函数 s ( x ) = 1 2 l n 1 + x 1 − x ( − 1 < x < 1 ) . ( 4 ) 该级数收敛半径为 1 ,收敛域为 ( − 1 , 1 ) ,当 x ∈ ( − 1 , 1 ) 时, ∑ n = 1 ∞ ( n + 2 ) x n + 3 = x 2 ∑ n = 1 ∞ ( n + 2 ) x n + 1 = x 2 ( ∑ n = 1 ∞ x n + 2 ) ′ ,其中 ∑ n = 1 ∞ x n + 2 = x 3 ∑ n = 0 ∞ x n = x 3 1 − x ,又因 ( ∑ n = 1 ∞ x n + 2 ) ′ = ( x 3 1 − x ) ′ = 3 x 2 − 2 x 3 ( 1 − x ) 2 , 所以和函数 s ( x ) = x 2 ⋅ 3 x 2 − 2 x 3 ( 1 − x ) 2 = 3 x 4 − 2 x 5 ( 1 − x ) 2 ( − 1 < x < 1 ) . \begin{aligned} &\ \ (1)\ 该级数的收敛半径为1,当-1 \lt x \lt 1时,\int_{0}^{x}(\sum_{n=1}^{\infty}nx^{n-1}))dx=\sum_{n=1}^{\infty}\left(\int_{0}^{x}nx^{n-1}dx\right)=\sum_{n=1}^{\infty}x^n=\frac{x}{1-x},\\ &\ \ \ \ \ \ \ \ 上式两端对x求导,得\sum_{n=1}^{\infty}nx^{n-1}=\frac{1}{(1-x)^2},又因原级数在x=\pm 1处发散,所以和函数\\ &\ \ \ \ \ \ \ \ s(x)=\frac{1}{(1-x)^2}\ (-1 \lt x \lt 1).\\ &\ \ (2)\ 该级数的收敛半径为1,当-1 \lt x \lt 1时,\left(\sum_{n=1}^{\infty}\frac{x^{4n+1}}{4n+1}\right)’=\sum_{n=1}^{\infty}\left(\frac{x^{4n+1}}{4n+1}\right)’=\sum_{n=1}^{\infty}x^{4n}=\frac{x^4}{1-x^4},\\ &\ \ \ \ \ \ \ \ 上式两端分别从0到x积分,由于\sum_{n=1}^{\infty}\frac{x^{4n+1}}{4n+1}在x=0处收敛于0,所以得\sum_{n=1}^{\infty}\frac{x^{4n+1}}{4n+1}=\\ &\ \ \ \ \ \ \ \ \int_{0}^{x}\frac{x^4}{1-x^4}dx=\int_{0}^{x}\left(-1+\frac{1}{2}\cdot \frac{1}{1+x^2}+\frac{1}{2}\cdot \frac{1}{1-x^2}\right)dx=\frac{1}{4}ln\ \frac{1+x}{1-x}+\frac{1}{2}arctan\ x-x,\\ &\ \ \ \ \ \ \ \ 又因原级数在x=\pm 1处发散,所以和函数s(x)=\frac{1}{4}ln\ \frac{1+x}{1-x}+\frac{1}{2}arctan\ x-x\ (-1 \lt x \lt 1).\\ &\ \ (3)\ 级数为\sum_{n=1}^{\infty}\frac{x^{2n-1}}{2n-1},收敛半径为1,当-1 \lt x \lt 1时,\left(\sum_{n=1}^{\infty}\frac{x^{2n-1}}{2n-1}\right)’=\sum_{n=1}^{\infty}x^{2n-2}=\frac{1}{1-x^2},\\ &\ \ \ \ \ \ \ \ 上式两端分别从0到x积分,且\sum_{n=1}^{\infty}\frac{x^{2n-1}}{2n-1}在x=0处收敛于0,所以得\sum_{n=1}^{\infty}\frac{x^{2n-1}}{2n-1}=\int_{0}^{x}\frac{1}{1-x^2}dx=\\ &\ \ \ \ \ \ \ \ \frac{1}{2}ln\ \frac{1+x}{1-x},又因原级数在x=\pm 1处发散,所以和函数s(x)=\frac{1}{2}ln\ \frac{1+x}{1-x}\ (-1 \lt x \lt 1).\\ &\ \ (4)\ 该级数收敛半径为1,收敛域为(-1, \ 1),当x\in(-1, \ 1)时,\sum_{n=1}^{\infty}(n+2)x^{n+3}=x^2\sum_{n=1}^{\infty}(n+2)x^{n+1}=\\ &\ \ \ \ \ \ \ \ x^2\left(\sum_{n=1}^{\infty}x^{n+2}\right)’,其中\sum_{n=1}^{\infty}x^{n+2}=x^3\sum_{n=0}^{\infty}x^n=\frac{x^3}{1-x},又因\left(\sum_{n=1}^{\infty}x^{n+2}\right)’=\left(\frac{x^3}{1-x}\right)’=\frac{3x^2-2x^3}{(1-x)^2},\\ &\ \ \ \ \ \ \ \ 所以和函数s(x)=x^2\cdot \frac{3x^2-2x^3}{(1-x)^2}=\frac{3x^4-2x^5}{(1-x)^2}\ (-1 \lt x \lt 1). & \end{aligned}​(1 )该级数的收敛半径为1 ,当−1 <x <1 时,∫0 x ​(n =1 ∑∞​n x n −1 ))d x =n =1 ∑∞​(∫0 x ​n x n −1 d x )=n =1 ∑∞​x n =1 −x x ​,上式两端对x 求导,得n =1 ∑∞​n x n −1 =(1 −x )2 1 ​,又因原级数在x =±1 处发散,所以和函数s (x )=(1 −x )2 1 ​(−1 <x <1 ).(2 )该级数的收敛半径为1 ,当−1 <x <1 时,(n =1 ∑∞​4 n +1 x 4 n +1 ​)′=n =1 ∑∞​(4 n +1 x 4 n +1 ​)′=n =1 ∑∞​x 4 n =1 −x 4 x 4 ​,上式两端分别从0 到x 积分,由于n =1 ∑∞​4 n +1 x 4 n +1 ​在x =0 处收敛于0 ,所以得n =1 ∑∞​4 n +1 x 4 n +1 ​=∫0 x ​1 −x 4 x 4 ​d x =∫0 x ​(−1 +2 1 ​⋅1 +x 2 1 ​+2 1 ​⋅1 −x 2 1 ​)d x =4 1 ​l n 1 −x 1 +x ​+2 1 ​a rc t an x −x ,又因原级数在x =±1 处发散,所以和函数s (x )=4 1 ​l n 1 −x 1 +x ​+2 1 ​a rc t an x −x (−1 <x <1 ).(3 )级数为n =1 ∑∞​2 n −1 x 2 n −1 ​,收敛半径为1 ,当−1 <x <1 时,(n =1 ∑∞​2 n −1 x 2 n −1 ​)′=n =1 ∑∞​x 2 n −2 =1 −x 2 1 ​,上式两端分别从0 到x 积分,且n =1 ∑∞​2 n −1 x 2 n −1 ​在x =0 处收敛于0 ,所以得n =1 ∑∞​2 n −1 x 2 n −1 ​=∫0 x ​1 −x 2 1 ​d x =2 1 ​l n 1 −x 1 +x ​,又因原级数在x =±1 处发散,所以和函数s (x )=2 1 ​l n 1 −x 1 +x ​(−1 <x <1 ).(4 )该级数收敛半径为1 ,收敛域为(−1 ,1 ),当x ∈(−1 ,1 )时,n =1 ∑∞​(n +2 )x n +3 =x 2 n =1 ∑∞​(n +2 )x n +1 =x 2 (n =1 ∑∞​x n +2 )′,其中n =1 ∑∞​x n +2 =x 3 n =0 ∑∞​x n =1 −x x 3 ​,又因(n =1 ∑∞​x n +2 )′=(1 −x x 3 ​)′=(1 −x )2 3 x 2 −2 x 3 ​,所以和函数s (x )=x 2 ⋅(1 −x )2 3 x 2 −2 x 3 ​=(1 −x )2 3 x 4 −2 x 5 ​(−1 <x <1 ).​​

Original: https://blog.csdn.net/navicheung/article/details/128749215
Author: Navigator_Z
Title: 高等数学(第七版)同济大学 习题12-3 个人解答

原创文章受到原创版权保护。转载请注明出处:https://www.johngo689.com/812215/

转载文章受原作者版权保护。转载请注明原作者出处!

(0)

大家都在看

亲爱的 Coder【最近整理,可免费获取】👉 最新必读书单  | 👏 面试题下载  | 🌎 免费的AI知识星球