python怎么做彩票概率_50 个常见的 Python 数据分析小方法(上)

作为数据分析的初学者,我感受最深的就是很多时候我想分析处理下数据,无从下手,有的代码也不记得,查找使用方法又得花费时间,所以我整理了一份数据分析问答形式的专题,这里都是平时实战中常用到的,方便以后直接利用!

嘿嘿,进入正题!上题目~

Q1:查看数据相关信息?

df.info()#查看数据类型

df.shape#查看数据规模

df.describe()#数据统计信息描述

Q2:如何设置才能不隐藏DataFram的列?

pd.set_option(“max_columns”,100)#这里100可以调整:最大显示列数

pd.set_option(‘display.max_columns’,None)#这种是都显示

Q3:统计空值?

df.isnull().sum()

Q4:查看是否有重复值?

df.duplicated().any()

Q5:填充空值?

df.fillna(method=”ffill”)#这是前向方法填充,bfill为后向填充

df.fillna(0)#用0填充空值

Q6:删除列?

df.drop([“”],axis=1,inplace=True)

Q7:删除有空值的行?

df.dropna(axis=0,how=’any’,inplace=True)

Q8:删除重复值?

df.drop_duplicates(inplace=True)

Q9:排除特殊值的数据?

df=df[~df[“列名”].isin([‘这里写特殊值/错误值’])]

Q10:修改数据类型?

df[“”]=df[“”].astype(int)

Q11:重置索引?

df=df.reset_index(drop=True)

Q12:按照某一列降序重新排序?

m=df[”].sort_values(ascending=False).index[:].tolist()

df=df.loc[m]

df=df.reset_index(drop=True)

Q13:从某个指标上考虑分组?

s=df.groupby(“列”)[“指标列”].agg([“count”,”sum”,”mean”])

Q14:筛选出指标统计大于10的,以均值排序输出前十名?

s=s[s[“count”]>20]

s.sort_values(“mean”,ascending=False).head(10)

Q15:分组统计输出为DataFram,并且进行列重命名?

df=df.groupby(”,as_index=False).count[[”,”]]

df.rename(columns={‘原来的列名’:’新的列名’},inplace=True)

Q16:时间标准化?

data[‘时间’]=pd.to_datetime(data[‘时间’])

Q17:根据生日计算年龄?

df[‘age’]=(pd.to_datetime(‘这里是当前日期如:2020-4’)-pd.to_datetime(df[‘birthday’]))/pd.Timedelta(‘365days’)

Q18:分割字符串?(以斜杠为例)

t=df[“”].str.split(“\”,expand=True)

t[0]

Q19:切片分段?(以分数列为例)

cut_bins=np.arrange(90,130,5)#分段设置,这里是分成5段

bins=pd.cut(df[‘score’],cut_bins)#将数据切片

bin_counts=df[‘score’].groupby(bins).count()

Q20:统计列值?

df[”].value_counts()

Q21:列值对比可视化?

df[”].value_counts().plot(kind=”bar”)

Q22:查看相关性?

df.corr()

Q23:画散点图,看两个属性之间的关系?

df.plot.scatter(x=””,y=””,figsize=(,),title=””)

Q24:DataFram直接可视化?

fig=df[[”,”]].plot(kind=”kde”,figsize=(24,8),title=””)

fig.axes.title.set_size(10)

Q25:逻辑回归预测?

fromsklearn.linear_modelimportLogisticRegression

model=LogisticRegression()

X=df.drop([‘y’],axis=1)

y=df[‘y’]

model.fit(X,y)

y_pre=model.predict(test)

Original: https://blog.csdn.net/weixin_31720623/article/details/112838608
Author: 骆启明
Title: python怎么做彩票概率_50 个常见的 Python 数据分析小方法(上)

原创文章受到原创版权保护。转载请注明出处:https://www.johngo689.com/754343/

转载文章受原作者版权保护。转载请注明原作者出处!

(0)

大家都在看

亲爱的 Coder【最近整理,可免费获取】👉 最新必读书单  | 👏 面试题下载  | 🌎 免费的AI知识星球