改进YOLOv5系列:27.YOLOv5 结合 Swin Transformer V2结构,Swin Transformer V2:通向视觉大模型之路

最新创新点改进推荐

-💡统一使用 YOLO 代码框架, 结合不同模块来构建不同的YOLO目标检测模型。

🔥 《芒果书》系列改进专栏内的改进文章,均包含多种模型改进方式,均适用于 YOLOv3YOLOv4YOLORYOLOXYOLOv5YOLOv7YOLOv8 改进(重点)!!!

🔥 专栏创新点教程 均有不少同学反应和我说已经在自己的数据集上有效涨点啦!! 包括COCO数据集也能涨点

所有文章博客均包含 改进源代码部分,一键训练即可

🔥 对应专栏订阅的越早,就可以越早使用 原创创新点去改进模型,抢先一步

芒果书 点击以下链接 查看文章目录详情🔗

🔥🔥🔥YOLO系列 + Swin Transformer V2 结合应用 为 CSDN芒果汁没有芒果 首发更新博文

点Star🌟Fork,第一时间获取 同步更新🚀

改进YOLOv5系列:27.YOLOv5 结合 Swin Transformer V2结构,Swin Transformer V2:通向视觉大模型之路
链接:https://github.com/iscyy/yoloair

对于这块有疑问的,可以在评论区提出,或者私信CSDN。🌟

本篇是《YOLOv5结合Swin Transformer V2结构🚀》的修改 演示

使用YOLOv5网络🚀作为示范,可以加入到 YOLOv7、YOLOX、YOLOR、YOLOv4、Scaled_YOLOv4、YOLOv3等一系列YOLO算法模块

文章目录

*
最新创新点改进推荐
点击查看详情:[YOLOv5改进、YOLOv7改进|YOLO改进超过50种注意力机制,全篇共计30万字(内附改进源代码),原创改进50种Attention注意力机制和Transformer自注意力机制](https://blog.csdn.net/qq_38668236/article/details/129137111)
🔥🔥🔥YOLO系列 + Swin Transformer V2 结合应用 为 CSDN芒果汁没有芒果 首发更新博文
Swin Transformer论文
YOLOv5结合Swin Transformer-V2 演示教程

+ YOLOv5的yaml配置文件
+ common.py配置
+ yolo.py配置
+ 训练yolov5_swin_transfomrer-V2模型

; Swin Transformer论文

改进YOLOv5系列:27.YOLOv5 结合 Swin Transformer V2结构,Swin Transformer V2:通向视觉大模型之路

该论文作者提出了缩放 Swin Transformer 的技术 多达 30 亿个参数,使其能够使用多达 1,536 个图像进行训练1,536 分辨率。通过扩大容量和分辨率,Swin Transformer 在四个具有代表性的视觉基准上创造了新记录:ImageNet-V2 图像分类的84.0% top-1 准确率,COCO 对象检测的63.1 / 54.4 box / mask mAP,ADE20K 语义分割的59.9 mIoU,和86.8%Kinetics-400 视频动作分类的前 1 准确率。我们的技术通常适用于扩大视觉模型,但尚未像 NLP 语言模型那样被广泛探索,部分原因是在训练和应用方面存在以下困难:1)视觉模型经常面临大规模的不稳定性问题和 2)许多下游视觉任务需要高分辨率图像或窗口,目前尚不清楚如何有效地将低分辨率预训练的模型转移到更高分辨率的模型。当图像分辨率很高时,GPU 内存消耗也是一个问题。为了解决这些问题,我们提出了几种技术,并通过使用 Swin Transformer 作为案例研究来说明:1)后归一化技术和缩放余弦注意方法,以提高大型视觉模型的稳定性;2) 一种对数间隔的连续位置偏差技术,可有效地将在低分辨率图像和窗口上预训练的模型转移到其更高分辨率的对应物上。此外,我们分享了我们的关键实现细节,这些细节可以显着节省 GPU 内存消耗,从而使使用常规 GPU 训练大型视觉模型变得可行。使用这些技术和自我监督的预训练,我们成功训练了一个强大的 30 亿个 Swin Transformer 模型,并有效地将其转移到涉及高分辨率图像或窗口的各种视觉任务中,在各种的基准。代码将在 我们分享了我们的关键实现细节,这些细节可以显着节省 GPU 内存消耗,从而使使用常规 GPU 训练大型视觉模型变得可行。使用这些技术和自我监督的预训练,我们成功训练了一个强大的 30 亿个 Swin Transformer 模型,并有效地将其转移到涉及高分辨率图像或窗口的各种视觉任务中,在各种的基准。代码将在 我们分享了我们的关键实现细节,这些细节可以显着节省 GPU 内存消耗,从而使使用常规 GPU 训练大型视觉模型变得可行。使用这些技术和自我监督的预训练,我们成功训练了一个强大的 30 亿个 Swin Transformer 模型,并有效地将其转移到涉及高分辨率图像或窗口的各种视觉任务中,在各种的基准。代码将在 我们成功训练了一个强大的 30 亿个 Swin Transformer 模型,并将其有效地转移到涉及高分辨率图像或窗口的各种视觉任务中,在各种基准测试中达到了最先进的精度。代码将在 我们成功训练了一个强大的 30 亿个 Swin Transformer 模型,并将其有效地转移到涉及高分辨率图像或窗口的各种视觉任务中,在各种基准测试中达到了最先进的精度。

改进YOLOv5系列:27.YOLOv5 结合 Swin Transformer V2结构,Swin Transformer V2:通向视觉大模型之路

YOLOv5结合Swin Transformer-V2 演示教程

YOLOv5的yaml配置文件

首先增加以下yolov5_swin_transfomrer.yaml文件


nc: 80
depth_multiple: 0.33
width_multiple: 0.50
anchors:
  - [10,13, 16,30, 33,23]
  - [30,61, 62,45, 59,119]
  - [116,90, 156,198, 373,326]

backbone:

  [[-1, 1, Conv, [64, 6, 2, 2]],
   [-1, 1, Conv, [128, 3, 2]],
   [-1, 3, C3, [128]],
   [-1, 1, Conv, [256, 3, 2]],
   [-1, 6, C3, [256]],
   [-1, 1, Conv, [512, 3, 2]],
   [-1, 9, SwinV2_CSPB, [256, 256]],
   [-1, 1, Conv, [1024, 3, 2]],
   [-1, 3, SwinV2_CSPB, [512, 512]],
   [-1, 1, SPPF, [1024, 5]],
  ]

head:
  [[-1, 1, Conv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],
   [-1, 3, C3, [512, False]],

   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],
   [-1, 3, C3, [256, False]],

   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 14], 1, Concat, [1]],
   [-1, 3, C3, [512, False]],

   [-1, 1, Conv, [512, 3, 2]],
   [[-1, 10], 1, Concat, [1]],
   [-1, 3, C3, [1024, False]],

   [[17, 20, 23], 1, Detect, [nc, anchors]],
  ]

common.py配置

在./models/common.py文件中增加以下模块,直接复制即可

class WindowAttention_v2(nn.Module):

    def __init__(self, dim, window_size, num_heads, qkv_bias=True, attn_drop=0., proj_drop=0.,
                 pretrained_window_size=[0, 0]):

        super().__init__()
        self.dim = dim
        self.window_size = window_size
        self.pretrained_window_size = pretrained_window_size
        self.num_heads = num_heads

        self.logit_scale = nn.Parameter(torch.log(10 * torch.ones((num_heads, 1, 1))), requires_grad=True)

        self.cpb_mlp = nn.Sequential(nn.Linear(2, 512, bias=True),
                                     nn.ReLU(inplace=True),
                                     nn.Linear(512, num_heads, bias=False))

        relative_coords_h = torch.arange(-(self.window_size[0] - 1), self.window_size[0], dtype=torch.float32)
        relative_coords_w = torch.arange(-(self.window_size[1] - 1), self.window_size[1], dtype=torch.float32)
        relative_coords_table = torch.stack(
            torch.meshgrid([relative_coords_h,
                            relative_coords_w])).permute(1, 2, 0).contiguous().unsqueeze(0)
        if pretrained_window_size[0] > 0:
            relative_coords_table[:, :, :, 0] /= (pretrained_window_size[0] - 1)
            relative_coords_table[:, :, :, 1] /= (pretrained_window_size[1] - 1)
        else:
            relative_coords_table[:, :, :, 0] /= (self.window_size[0] - 1)
            relative_coords_table[:, :, :, 1] /= (self.window_size[1] - 1)
        relative_coords_table *= 8
        relative_coords_table = torch.sign(relative_coords_table) * torch.log2(
            torch.abs(relative_coords_table) + 1.0) / np.log2(8)

        self.register_buffer("relative_coords_table", relative_coords_table)

        coords_h = torch.arange(self.window_size[0])
        coords_w = torch.arange(self.window_size[1])
        coords = torch.stack(torch.meshgrid([coords_h, coords_w]))
        coords_flatten = torch.flatten(coords, 1)
        relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]
        relative_coords = relative_coords.permute(1, 2, 0).contiguous()
        relative_coords[:, :, 0] += self.window_size[0] - 1
        relative_coords[:, :, 1] += self.window_size[1] - 1
        relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
        relative_position_index = relative_coords.sum(-1)
        self.register_buffer("relative_position_index", relative_position_index)

        self.qkv = nn.Linear(dim, dim * 3, bias=False)
        if qkv_bias:
            self.q_bias = nn.Parameter(torch.zeros(dim))
            self.v_bias = nn.Parameter(torch.zeros(dim))
        else:
            self.q_bias = None
            self.v_bias = None
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)
        self.softmax = nn.Softmax(dim=-1)

    def forward(self, x, mask=None):

        B_, N, C = x.shape
        qkv_bias = None
        if self.q_bias is not None:
            qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias))
        qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
        qkv = qkv.reshape(B_, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
        q, k, v = qkv[0], qkv[1], qkv[2]

        attn = (F.normalize(q, dim=-1) @ F.normalize(k, dim=-1).transpose(-2, -1))
        logit_scale = torch.clamp(self.logit_scale, max=torch.log(torch.tensor(1. / 0.01))).exp()
        attn = attn * logit_scale

        relative_position_bias_table = self.cpb_mlp(self.relative_coords_table).view(-1, self.num_heads)
        relative_position_bias = relative_position_bias_table[self.relative_position_index.view(-1)].view(
            self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1)
        relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous()
        relative_position_bias = 16 * torch.sigmoid(relative_position_bias)
        attn = attn + relative_position_bias.unsqueeze(0)

        if mask is not None:
            nW = mask.shape[0]
            attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
            attn = attn.view(-1, self.num_heads, N, N)
            attn = self.softmax(attn)
        else:
            attn = self.softmax(attn)

        attn = self.attn_drop(attn)

        try:
            x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
        except:
            x = (attn.half() @ v).transpose(1, 2).reshape(B_, N, C)

        x = self.proj(x)
        x = self.proj_drop(x)
        return x

    def extra_repr(self) -> str:
        return f'dim={self.dim}, window_size={self.window_size}, ' \
               f'pretrained_window_size={self.pretrained_window_size}, num_heads={self.num_heads}'

    def flops(self, N):

        flops = 0

        flops += N * self.dim * 3 * self.dim

        flops += self.num_heads * N * (self.dim // self.num_heads) * N

        flops += self.num_heads * N * N * (self.dim // self.num_heads)

        flops += N * self.dim * self.dim
        return flops

class Mlp_v2(nn.Module):
    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.SiLU, drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop = nn.Dropout(drop)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x

class SwinTransformerLayer_v2(nn.Module):

    def __init__(self, dim, num_heads, window_size=7, shift_size=0,
                 mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0., drop_path=0.,
                 act_layer=nn.SiLU, norm_layer=nn.LayerNorm, pretrained_window_size=0):
        super().__init__()
        self.dim = dim

        self.num_heads = num_heads
        self.window_size = window_size
        self.shift_size = shift_size
        self.mlp_ratio = mlp_ratio

        assert 0  self.shift_size < self.window_size, "shift_size must in 0-window_size"

        self.norm1 = norm_layer(dim)
        self.attn = WindowAttention_v2(
            dim, window_size=(self.window_size, self.window_size), num_heads=num_heads,
            qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop,
            pretrained_window_size=(pretrained_window_size, pretrained_window_size))

        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp_v2(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)

    def create_mask(self, H, W):

        img_mask = torch.zeros((1, H, W, 1))
        h_slices = (slice(0, -self.window_size),
                    slice(-self.window_size, -self.shift_size),
                    slice(-self.shift_size, None))
        w_slices = (slice(0, -self.window_size),
                    slice(-self.window_size, -self.shift_size),
                    slice(-self.shift_size, None))
        cnt = 0
        for h in h_slices:
            for w in w_slices:
                img_mask[:, h, w, :] = cnt
                cnt += 1

        mask_windows = window_partition(img_mask, self.window_size)
        mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
        attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
        attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))

        return attn_mask

    def forward(self, x):

        _, _, H_, W_ = x.shape

        Padding = False
        if min(H_, W_) < self.window_size or H_ % self.window_size!=0 or W_ % self.window_size!=0:
            Padding = True

            pad_r = (self.window_size - W_ % self.window_size) % self.window_size
            pad_b = (self.window_size - H_ % self.window_size) % self.window_size
            x = F.pad(x, (0, pad_r, 0, pad_b))

        B, C, H, W = x.shape
        L = H * W
        x = x.permute(0, 2, 3, 1).contiguous().view(B, L, C)

        if self.shift_size > 0:
            attn_mask = self.create_mask(H, W).to(x.device)
        else:
            attn_mask = None

        shortcut = x
        x = x.view(B, H, W, C)

        if self.shift_size > 0:
            shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
        else:
            shifted_x = x

        x_windows = window_partition_v2(shifted_x, self.window_size)
        x_windows = x_windows.view(-1, self.window_size * self.window_size, C)

        attn_windows = self.attn(x_windows, mask=attn_mask)

        attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
        shifted_x = window_reverse_v2(attn_windows, self.window_size, H, W)

        if self.shift_size > 0:
            x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
        else:
            x = shifted_x
        x = x.view(B, H * W, C)
        x = shortcut + self.drop_path(self.norm1(x))

        x = x + self.drop_path(self.norm2(self.mlp(x)))
        x = x.permute(0, 2, 1).contiguous().view(-1, C, H, W)

        if Padding:
            x = x[:, :, :H_, :W_]

        return x

    def extra_repr(self) -> str:
        return f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " \
               f"window_size={self.window_size}, shift_size={self.shift_size}, mlp_ratio={self.mlp_ratio}"

    def flops(self):
        flops = 0
        H, W = self.input_resolution

        flops += self.dim * H * W

        nW = H * W / self.window_size / self.window_size
        flops += nW * self.attn.flops(self.window_size * self.window_size)

        flops += 2 * H * W * self.dim * self.dim * self.mlp_ratio

        flops += self.dim * H * W
        return flops

class SwinTransformer2Block(nn.Module):
    def __init__(self, c1, c2, num_heads, num_layers, window_size=7):
        super().__init__()
        self.conv = None
        if c1 != c2:
            self.conv = Conv(c1, c2)

        self.blocks = nn.Sequential(*[SwinTransformerLayer_v2(dim=c2, num_heads=num_heads, window_size=window_size,
                                 shift_size=0 if (i % 2 == 0) else window_size // 2) for i in range(num_layers)])

    def forward(self, x):
        if self.conv is not None:
            x = self.conv(x)
        x = self.blocks(x)
        return x

class SwinV2_CSPB(nn.Module):

    def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5):
        super(SwinV2_CSPB, self).__init__()
        c_ = int(c2)
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c_, c_, 1, 1)
        self.cv3 = Conv(2 * c_, c2, 1, 1)
        num_heads = c_ // 32
        self.m = SwinTransformer2Block(c_, c_, num_heads, n)

    def forward(self, x):
        x1 = self.cv1(x)
        y1 = self.m(x1)
        y2 = self.cv2(x1)
        return self.cv3(torch.cat((y1, y2), dim=1))

yolo.py配置

不需要

训练yolov5_swin_transfomrer-V2模型

python train.py --cfg yolov5_swin_transfomrer-V2.yaml

Original: https://blog.csdn.net/qq_38668236/article/details/126735107
Author: 芒果汁没有芒果
Title: 改进YOLOv5系列:27.YOLOv5 结合 Swin Transformer V2结构,Swin Transformer V2:通向视觉大模型之路

原创文章受到原创版权保护。转载请注明出处:https://www.johngo689.com/721322/

转载文章受原作者版权保护。转载请注明原作者出处!

(0)

大家都在看

亲爱的 Coder【最近整理,可免费获取】👉 最新必读书单  | 👏 面试题下载  | 🌎 免费的AI知识星球