DenseNet

paper: Densely Connected Convolutional Networks

Memory-Efficient Implementation of DenseNets

code: https://github.com/pytorch/vision/blob/main/torchvision/models/densenet.py

在本篇文章中,作者提出了Dense Convolutional Network (DenseNet),下图是一个5层的dense block结构,可以看出每一层都作为后面所有层的输入。

DenseNet

DenseNet有以下几个优点:

  1. 缓解了梯度消失问题
  2. 加强了特征的传播
  3. 增强了特征重用
  4. 大幅减少了参数数量

作者指出ResNet的一个优势是梯度可以通过identity函数直接从后面的层传播到前面的层,但是identity函数是通过相加(summation)和卷积结果进行融合的,这可能会阻碍网络中的信息流动。因此作者通过拼接(concatenation)的方式在每一层与后面所有的层之间都建立连接,来进一步改善层之间的信息流动。

实现细节:

  • 层之间是一个包含三个连续的运算的复合函数:BN – ReLU – Conv(3×3)
  • 在DenseNet中复合函数用的是pre-activation即BN-ReLU-Conv,而不是常见的post-activation即Conv-BN-ReLU,作者在文中提到pre-activation对DenseNet的最终效果影响很大,换成post-activation在cifar10和cifar100数据集上都会掉点
  • dense block之间的transition层负责下采样,具体包括:BN – Conv(1×1) – 2×2 average pooling
  • 假设一个dense block的输入特征图通道数为 (k_{0}),其中每一层的输出通道数为 (k),则第 (l) 层的输入通道数为 (k_{0}+k\times (l-1))。这里的超参 (k) 就是网络的 growth rate。比较反直觉的是DenseNet的参数较少,就是因为这里的 (k) 可以设置的较小,文章中设置 (k=32),而不用像其它网络那样输出通道数达到1024、2048。
  • 尽管每一层的输出通道数 (k) 比较小,但是因为输入包含了前面所有层因此输入的通道数很大,因此作者又提出了 DenseNet-B,在每个3×3卷积层前添加1×1卷积作为bottleneck layer来进行降维,进一步提高计算效率。这样每一层的复合函数就变成了BN – ReLU – Conv(1×1) – BN – ReLU – Conv(3×3),文中1×1卷积的输出通道设置为 (4k)。
  • 为了进一步减少参数,可以减少transition layer的输出通道数,如果dense block的输出通道为 (m),设置transition layer的输出为 (\theta m),对 (\theta < 1) 的DenseNet称为 DenseNet-C。文中设置 (\theta = 0.5),对于含有bottleneck layer并且 (\theta < 1) 的DenseNet称为 DenseNet-BC
  • 文中对于ImageNet数据集,作者使用含有4个dense block的DenseNet-BC,在第一个dense block前是一个7×7 stride=2 输出通道为 (2k) 的卷积层,然后是一个3×3 stride=2的max pooling层。在最后一个dense block后是一个全局平均池化,然后是softmax分类器。

不同层数的DenseNet结构如下表所示

DenseNet

代码

这里的代码是torchvision的官方实现

import re
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as cp
from collections import OrderedDict
from .._internally_replaced_utils import load_state_dict_from_url
from torch import Tensor
from typing import Any, List, Tuple

__all__ = ['DenseNet', 'densenet121', 'densenet169', 'densenet201', 'densenet161']

model_urls = {
    'densenet121': 'https://download.pytorch.org/models/densenet121-a639ec97.pth',
    'densenet169': 'https://download.pytorch.org/models/densenet169-b2777c0a.pth',
    'densenet201': 'https://download.pytorch.org/models/densenet201-c1103571.pth',
    'densenet161': 'https://download.pytorch.org/models/densenet161-8d451a50.pth',
}

class _DenseLayer(nn.Module):
    def __init__(
        self,
        num_input_features: int,
        growth_rate: int,
        bn_size: int,
        drop_rate: float,
        memory_efficient: bool = False
    ) -> None:
        super(_DenseLayer, self).__init__()
        self.norm1: nn.BatchNorm2d
        self.add_module('norm1', nn.BatchNorm2d(num_input_features))
        self.relu1: nn.ReLU
        self.add_module('relu1', nn.ReLU(inplace=True))
        self.conv1: nn.Conv2d
        self.add_module('conv1', nn.Conv2d(num_input_features, bn_size *
                                           growth_rate, kernel_size=1, stride=1,
                                           bias=False))
        self.norm2: nn.BatchNorm2d
        self.add_module('norm2', nn.BatchNorm2d(bn_size * growth_rate))
        self.relu2: nn.ReLU
        self.add_module('relu2', nn.ReLU(inplace=True))
        self.conv2: nn.Conv2d
        self.add_module('conv2', nn.Conv2d(bn_size * growth_rate, growth_rate,
                                           kernel_size=3, stride=1, padding=1,
                                           bias=False))
        self.drop_rate = float(drop_rate)
        self.memory_efficient = memory_efficient

    def bn_function(self, inputs: List[Tensor]) -> Tensor:
        concated_features = torch.cat(inputs, 1)
        bottleneck_output = self.conv1(self.relu1(self.norm1(concated_features)))  # noqa: T484
        return bottleneck_output

    # todo: rewrite when torchscript supports any
    def any_requires_grad(self, input: List[Tensor]) -> bool:
        for tensor in input:
            if tensor.requires_grad:
                return True
        return False

    @torch.jit.unused  # noqa: T484
    def call_checkpoint_bottleneck(self, input: List[Tensor]) -> Tensor:
        def closure(*inputs):
            return self.bn_function(inputs)

        return cp.checkpoint(closure, *input)

    @torch.jit._overload_method  # noqa: F811
    def forward(self, input: List[Tensor]) -> Tensor:
        pass

    @torch.jit._overload_method  # noqa: F811
    def forward(self, input: Tensor) -> Tensor:
        pass

    # torchscript does not yet support *args, so we overload method
    # allowing it to take either a List[Tensor] or single Tensor
    def forward(self, input: Tensor) -> Tensor:  # noqa: F811
        if isinstance(input, Tensor):
            prev_features = [input]
        else:
            prev_features = input

        if self.memory_efficient and self.any_requires_grad(prev_features):
            if torch.jit.is_scripting():
                raise Exception("Memory Efficient not supported in JIT")

            bottleneck_output = self.call_checkpoint_bottleneck(prev_features)
        else:
            bottleneck_output = self.bn_function(prev_features)

        new_features = self.conv2(self.relu2(self.norm2(bottleneck_output)))
        if self.drop_rate > 0:
            new_features = F.dropout(new_features, p=self.drop_rate,
                                     training=self.training)
        return new_features

class _DenseBlock(nn.ModuleDict):
    _version = 2

    def __init__(
        self,
        num_layers: int,
        num_input_features: int,
        bn_size: int,
        growth_rate: int,
        drop_rate: float,
        memory_efficient: bool = False
    ) -> None:
        super(_DenseBlock, self).__init__()
        for i in range(num_layers):
            layer = _DenseLayer(
                num_input_features + i * growth_rate,
                growth_rate=growth_rate,
                bn_size=bn_size,
                drop_rate=drop_rate,
                memory_efficient=memory_efficient,
            )
            self.add_module('denselayer%d' % (i + 1), layer)

    def forward(self, init_features: Tensor) -> Tensor:
        features = [init_features]
        for name, layer in self.items():
            new_features = layer(features)
            features.append(new_features)
        return torch.cat(features, 1)

class _Transition(nn.Sequential):
    def __init__(self, num_input_features: int, num_output_features: int) -> None:
        super(_Transition, self).__init__()
        self.add_module('norm', nn.BatchNorm2d(num_input_features))
        self.add_module('relu', nn.ReLU(inplace=True))
        self.add_module('conv', nn.Conv2d(num_input_features, num_output_features,
                                          kernel_size=1, stride=1, bias=False))
        self.add_module('pool', nn.AvgPool2d(kernel_size=2, stride=2))

class DenseNet(nn.Module):
    r"""Densenet-BC model class, based on
    "Densely Connected Convolutional Networks" _.

    Args:
        growth_rate (int) - how many filters to add each layer (k in paper)
        block_config (list of 4 ints) - how many layers in each pooling block
        num_init_features (int) - the number of filters to learn in the first convolution layer
        bn_size (int) - multiplicative factor for number of bottle neck layers
          (i.e. bn_size * k features in the bottleneck layer)
        drop_rate (float) - dropout rate after each dense layer
        num_classes (int) - number of classification classes
        memory_efficient (bool) - If True, uses checkpointing. Much more memory efficient,
          but slower. Default: *False*. See "paper" _.

"""

    def __init__(
        self,
        growth_rate: int = 32,
        block_config: Tuple[int, int, int, int] = (6, 12, 24, 16),
        num_init_features: int = 64,
        bn_size: int = 4,
        drop_rate: float = 0,
        num_classes: int = 1000,
        memory_efficient: bool = False
    ) -> None:

        super(DenseNet, self).__init__()

        # First convolution
        self.features = nn.Sequential(OrderedDict([
            ('conv0', nn.Conv2d(3, num_init_features, kernel_size=7, stride=2,
                                padding=3, bias=False)),
            ('norm0', nn.BatchNorm2d(num_init_features)),
            ('relu0', nn.ReLU(inplace=True)),
            ('pool0', nn.MaxPool2d(kernel_size=3, stride=2, padding=1)),
        ]))

        # Each denseblock
        num_features = num_init_features
        for i, num_layers in enumerate(block_config):
            block = _DenseBlock(
                num_layers=num_layers,
                num_input_features=num_features,
                bn_size=bn_size,
                growth_rate=growth_rate,
                drop_rate=drop_rate,
                memory_efficient=memory_efficient
            )
            self.features.add_module('denseblock%d' % (i + 1), block)
            num_features = num_features + num_layers * growth_rate
            if i != len(block_config) - 1:
                trans = _Transition(num_input_features=num_features,
                                    num_output_features=num_features // 2)
                self.features.add_module('transition%d' % (i + 1), trans)
                num_features = num_features // 2

        # Final batch norm
        self.features.add_module('norm5', nn.BatchNorm2d(num_features))

        # Linear layer
        self.classifier = nn.Linear(num_features, num_classes)

        # Official init from torch repo.

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight)
            elif isinstance(m, nn.BatchNorm2d):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)
            elif isinstance(m, nn.Linear):
                nn.init.constant_(m.bias, 0)

    def forward(self, x: Tensor) -> Tensor:
        features = self.features(x)
        out = F.relu(features, inplace=True)
        out = F.adaptive_avg_pool2d(out, (1, 1))
        out = torch.flatten(out, 1)
        out = self.classifier(out)
        return out

def _load_state_dict(model: nn.Module, model_url: str, progress: bool) -> None:
    # '.'s are no longer allowed in module names, but previous _DenseLayer
    # has keys 'norm.1', 'relu.1', 'conv.1', 'norm.2', 'relu.2', 'conv.2'.

    # They are also in the checkpoints in model_urls. This pattern is used
    # to find such keys.

    pattern = re.compile(
        r'^(.*denselayer\d+\.(?:norm|relu|conv))\.((?:[12])\.(?:weight|bias|running_mean|running_var))$')

    state_dict = load_state_dict_from_url(model_url, progress=progress)
    for key in list(state_dict.keys()):
        res = pattern.match(key)
        if res:
            new_key = res.group(1) + res.group(2)
            state_dict[new_key] = state_dict[key]
            del state_dict[key]
    model.load_state_dict(state_dict)

def _densenet(
    arch: str,
    growth_rate: int,
    block_config: Tuple[int, int, int, int],
    num_init_features: int,
    pretrained: bool,
    progress: bool,
    **kwargs: Any
) -> DenseNet:
    model = DenseNet(growth_rate, block_config, num_init_features, **kwargs)
    if pretrained:
        _load_state_dict(model, model_urls[arch], progress)
    return model

def densenet121(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> DenseNet:
    r"""Densenet-121 model from
    "Densely Connected Convolutional Networks" _.

    The required minimum input size of the model is 29x29.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
        memory_efficient (bool) - If True, uses checkpointing. Much more memory efficient,
          but slower. Default: *False*. See "paper" _.

"""
    return _densenet('densenet121', 32, (6, 12, 24, 16), 64, pretrained, progress,
                     **kwargs)

def densenet161(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> DenseNet:
    r"""Densenet-161 model from
    "Densely Connected Convolutional Networks" _.

    The required minimum input size of the model is 29x29.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
        memory_efficient (bool) - If True, uses checkpointing. Much more memory efficient,
          but slower. Default: *False*. See "paper" _.

"""
    return _densenet('densenet161', 48, (6, 12, 36, 24), 96, pretrained, progress,
                     **kwargs)

def densenet169(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> DenseNet:
    r"""Densenet-169 model from
    "Densely Connected Convolutional Networks" _.

    The required minimum input size of the model is 29x29.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
        memory_efficient (bool) - If True, uses checkpointing. Much more memory efficient,
          but slower. Default: *False*. See "paper" _.

"""
    return _densenet('densenet169', 32, (6, 12, 32, 32), 64, pretrained, progress,
                     **kwargs)

def densenet201(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> DenseNet:
    r"""Densenet-201 model from
    "Densely Connected Convolutional Networks" _.

    The required minimum input size of the model is 29x29.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
        memory_efficient (bool) - If True, uses checkpointing. Much more memory efficient,
          but slower. Default: *False*. See "paper" _.

"""
    return _densenet('densenet201', 32, (6, 12, 48, 32), 64, pretrained, progress,
                     **kwargs)

Memory-Efficient Implementation

DenseNet虽然参数很少,但因为每一层的输入都要对之前所有层的输出进行拼接,在大多数框架如Tensorflow和Pytorch中,每进行一次拼接操作,都会开辟新的内存用于保存拼接后的结果,因此对于一个 (L) 层的DenseNet,这就要占用 (L(L+1)/2) 层的内存。对于一个普通的卷积网络如vgg、resnet,中间特征图的数量随着网络深度的加深呈线性增长,因此将这些特征图保存在内存中不会带来显著的内存负担。但对于一个有 (m) 层的dense block,保存中间特征图会导致 (O(m^2)) 的内存使用,这种指数级的增长会导致显存不够的情况。

解决方法:深度学习框架中之所以要保存中间结果,是因为反向传播过程中需要用到这些中间结果来计算梯度。具体解决方法是前向过程中不保存中间结果,而是保存输入和具体的运算函数(比如卷积、BN、池化等),这样在反向过程中需要用到前向的中间结果时,通过保存的输入和函数重新计算,这样就大大减小了显存的占用,但同时也导致了训练时间的增加,算是一种用时间换空间的方法。

在上面torchvision的实现中,通过 torch.utils.checkpoint.checkpoint来实现,并且只对复合函数BN – ReLU – Conv(1×1) – BN – ReLU – Conv(3×3)中的前半部分进行该操作,因为当 (growth_rate=k) 时,1×1卷积的输出通道数是 (4k),3×3卷积的输出是 (k),前半部分的显存占用更多。

Original: https://blog.csdn.net/ooooocj/article/details/124060354
Author: 00000cj
Title: DenseNet

原创文章受到原创版权保护。转载请注明出处:https://www.johngo689.com/663421/

转载文章受原作者版权保护。转载请注明原作者出处!

(0)

大家都在看

亲爱的 Coder【最近整理,可免费获取】👉 最新必读书单  | 👏 面试题下载  | 🌎 免费的AI知识星球