知识蒸馏算法汇总

知识蒸馏有两大类:一类是logits蒸馏,另一类是特征蒸馏。logits蒸馏指的是在softmax时使用较高的温度系数,提升负标签的信息,然后使用Student和Teacher在高温softmax下logits的KL散度作为loss。中间特征蒸馏就是强迫Student去学习Teacher某些中间层的特征,直接匹配中间的特征或学习特征之间的转换关系。例如,在特征No.1和No.2中间,知识可以表示为如何模做两者中间的转化,可以用一个矩阵让学习者产生这个矩阵,学习者和转化之间的学习关系。
这篇文章汇总了常用的知识蒸馏的论文和代码,方便后续的学习和研究。

1、Logits

论文链接:https://proceedings.neurips.cc/paper/2014/file/ea8fcd92d59581717e06eb187f10666d-Paper.pdf
代码:

from __future__ import absolute_import
from __future__ import print_function
from __future__ import division
import torch
import torch.nn as nn
import torch.nn.functional as F

class Logits(nn.Module):
    '''
    Do Deep Nets Really Need to be Deep?
    http://papers.nips.cc/paper/5484-do-deep-nets-really-need-to-be-deep.pdf
    '''
    def __init__(self):
        super(Logits, self).__init__()

    def forward(self, out_s, out_t):
        loss = F.mse_loss(out_s, out_t)

        return loss

2、ST

论文链接:https://arxiv.org/pdf/1503.02531.pdf
代码:

from __future__ import absolute_import
from __future__ import print_function
from __future__ import division
import torch
import torch.nn as nn
import torch.nn.functional as F

class SoftTarget(nn.Module):
    '''
    Distilling the Knowledge in a Neural Network
    https://arxiv.org/pdf/1503.02531.pdf
    '''
    def __init__(self, T):
        super(SoftTarget, self).__init__()
        self.T = T

    def forward(self, out_s, out_t):
        loss = F.kl_div(F.log_softmax(out_s/self.T, dim=1),
                        F.softmax(out_t/self.T, dim=1),
                        reduction='batchmean') * self.T * self.T

        return loss

知识蒸馏算法汇总

3、AT

论文链接:https://arxiv.org/pdf/1612.03928.pdf
代码:

from __future__ import absolute_import
from __future__ import print_function
from __future__ import division
import torch
import torch.nn as nn
import torch.nn.functional as F

'''
AT with sum of absolute values with power p
'''
class AT(nn.Module):
    '''
    Paying More Attention to Attention: Improving the Performance of Convolutional
    Neural Netkworks wia Attention Transfer
    https://arxiv.org/pdf/1612.03928.pdf
    '''
    def __init__(self, p):
        super(AT, self).__init__()
        self.p = p

    def forward(self, fm_s, fm_t):
        loss = F.mse_loss(self.attention_map(fm_s), self.attention_map(fm_t))

        return loss

    def attention_map(self, fm, eps=1e-6):
        am = torch.pow(torch.abs(fm), self.p)
        am = torch.sum(am, dim=1, keepdim=True)
        norm = torch.norm(am, dim=(2,3), keepdim=True)
        am = torch.div(am, norm+eps)

        return am

4、Fitnet

论文链接:https://arxiv.org/pdf/1412.6550.pdf
代码:

from __future__ import absolute_import
from __future__ import print_function
from __future__ import division
import torch
import torch.nn as nn
import torch.nn.functional as F

class Hint(nn.Module):
    '''
    FitNets: Hints for Thin Deep Nets
    https://arxiv.org/pdf/1412.6550.pdf
    '''
    def __init__(self):
        super(Hint, self).__init__()

    def forward(self, fm_s, fm_t):
        loss = F.mse_loss(fm_s, fm_t)

        return loss

5、NST

论文链接:https://arxiv.org/pdf/1707.01219.pdf

from __future__ import absolute_import
from __future__ import print_function
from __future__ import division
import torch
import torch.nn as nn
import torch.nn.functional as F

'''
NST with Polynomial Kernel, where d=2 and c=0
'''
class NST(nn.Module):
    '''
    Like What You Like: Knowledge Distill via Neuron Selectivity Transfer
    https://arxiv.org/pdf/1707.01219.pdf
    '''
    def __init__(self):
        super(NST, self).__init__()

    def forward(self, fm_s, fm_t):
        fm_s = fm_s.view(fm_s.size(0), fm_s.size(1), -1)
        fm_s = F.normalize(fm_s, dim=2)

        fm_t = fm_t.view(fm_t.size(0), fm_t.size(1), -1)
        fm_t = F.normalize(fm_t, dim=2)

        loss = self.poly_kernel(fm_t, fm_t).mean() \
             + self.poly_kernel(fm_s, fm_s).mean() \
             - 2 * self.poly_kernel(fm_s, fm_t).mean()

        return loss

    def poly_kernel(self, fm1, fm2):
        fm1 = fm1.unsqueeze(1)
        fm2 = fm2.unsqueeze(2)
        out = (fm1 * fm2).sum(-1).pow(2)

        return out

6、PKT

论文链接:http://openaccess.thecvf.com/content_ECCV_2018/papers/Nikolaos_Passalis_Learning_Deep_Representations_ECCV_2018_paper.pdf
代码:

from __future__ import absolute_import
from __future__ import print_function
from __future__ import division
import torch
import torch.nn as nn
import torch.nn.functional as F

'''
Adopted from https://github.com/passalis/probabilistic_kt/blob/master/nn/pkt.py
'''
class PKTCosSim(nn.Module):
    '''
    Learning Deep Representations with Probabilistic Knowledge Transfer
    http://openaccess.thecvf.com/content_ECCV_2018/papers/Nikolaos_Passalis_Learning_Deep_Representations_ECCV_2018_paper.pdf
    '''
    def __init__(self):
        super(PKTCosSim, self).__init__()

    def forward(self, feat_s, feat_t, eps=1e-6):

        feat_s_norm = torch.sqrt(torch.sum(feat_s ** 2, dim=1, keepdim=True))
        feat_s = feat_s / (feat_s_norm + eps)
        feat_s[feat_s != feat_s] = 0

        feat_t_norm = torch.sqrt(torch.sum(feat_t ** 2, dim=1, keepdim=True))
        feat_t = feat_t / (feat_t_norm + eps)
        feat_t[feat_t != feat_t] = 0

        feat_s_cos_sim = torch.mm(feat_s, feat_s.transpose(0, 1))
        feat_t_cos_sim = torch.mm(feat_t, feat_t.transpose(0, 1))

        feat_s_cos_sim = (feat_s_cos_sim + 1.0) / 2.0
        feat_t_cos_sim = (feat_t_cos_sim + 1.0) / 2.0

        feat_s_cond_prob = feat_s_cos_sim / torch.sum(feat_s_cos_sim, dim=1, keepdim=True)
        feat_t_cond_prob = feat_t_cos_sim / torch.sum(feat_t_cos_sim, dim=1, keepdim=True)

        loss = torch.mean(feat_t_cond_prob * torch.log((feat_t_cond_prob + eps) / (feat_s_cond_prob + eps)))

        return loss

7、FSP

论文链接:http://openaccess.thecvf.com/content_cvpr_2017/papers/Yim_A_Gift_From_CVPR_2017_paper.pdf
代码:

from __future__ import absolute_import
from __future__ import print_function
from __future__ import division
import torch
import torch.nn as nn
import torch.nn.functional as F

class FSP(nn.Module):
    '''
    A Gift from Knowledge Distillation: Fast Optimization, Network Minimization and Transfer Learning
    http://openaccess.thecvf.com/content_cvpr_2017/papers/Yim_A_Gift_From_CVPR_2017_paper.pdf
    '''
    def __init__(self):
        super(FSP, self).__init__()

    def forward(self, fm_s1, fm_s2, fm_t1, fm_t2):
        loss = F.mse_loss(self.fsp_matrix(fm_s1,fm_s2), self.fsp_matrix(fm_t1,fm_t2))

        return loss

    def fsp_matrix(self, fm1, fm2):
        if fm1.size(2) > fm2.size(2):
            fm1 = F.adaptive_avg_pool2d(fm1, (fm2.size(2), fm2.size(3)))

        fm1 = fm1.view(fm1.size(0), fm1.size(1), -1)
        fm2 = fm2.view(fm2.size(0), fm2.size(1), -1).transpose(1,2)

        fsp = torch.bmm(fm1, fm2) / fm1.size(2)

        return fsp

8、FT

论文链接:http://papers.nips.cc/paper/7541-paraphrasing-complex-network-network-compression-via-factor-transfer.pdf
代码:

from __future__ import absolute_import
from __future__ import print_function
from __future__ import division
import torch
import torch.nn as nn
import torch.nn.functional as F

class FT(nn.Module):
    '''
    araphrasing Complex Network: Network Compression via Factor Transfer
    http://papers.nips.cc/paper/7541-paraphrasing-complex-network-network-compression-via-factor-transfer.pdf
    '''
    def __init__(self):
        super(FT, self).__init__()

    def forward(self, factor_s, factor_t):
        loss = F.l1_loss(self.normalize(factor_s), self.normalize(factor_t))

        return loss

    def normalize(self, factor):
        norm_factor = F.normalize(factor.view(factor.size(0),-1))

        return norm_factor

9、RKD

论文链接:https://arxiv.org/pdf/1904.05068.pdf
代码:

from __future__ import absolute_import
from __future__ import print_function
from __future__ import division
import torch
import torch.nn as nn
import torch.nn.functional as F

'''
From https://github.com/lenscloth/RKD/blob/master/metric/loss.py
'''
class RKD(nn.Module):
    '''
    Relational Knowledge Distillation
    https://arxiv.org/pdf/1904.05068.pdf
    '''
    def __init__(self, w_dist, w_angle):
        super(RKD, self).__init__()

        self.w_dist  = w_dist
        self.w_angle = w_angle

    def forward(self, feat_s, feat_t):
        loss = self.w_dist * self.rkd_dist(feat_s, feat_t) + \
               self.w_angle * self.rkd_angle(feat_s, feat_t)

        return loss

    def rkd_dist(self, feat_s, feat_t):
        feat_t_dist = self.pdist(feat_t, squared=False)
        mean_feat_t_dist = feat_t_dist[feat_t_dist>0].mean()
        feat_t_dist = feat_t_dist / mean_feat_t_dist

        feat_s_dist = self.pdist(feat_s, squared=False)
        mean_feat_s_dist = feat_s_dist[feat_s_dist>0].mean()
        feat_s_dist = feat_s_dist / mean_feat_s_dist

        loss = F.smooth_l1_loss(feat_s_dist, feat_t_dist)

        return loss

    def rkd_angle(self, feat_s, feat_t):

        feat_t_vd = (feat_t.unsqueeze(0) - feat_t.unsqueeze(1))
        norm_feat_t_vd = F.normalize(feat_t_vd, p=2, dim=2)
        feat_t_angle = torch.bmm(norm_feat_t_vd, norm_feat_t_vd.transpose(1, 2)).view(-1)

        feat_s_vd = (feat_s.unsqueeze(0) - feat_s.unsqueeze(1))
        norm_feat_s_vd = F.normalize(feat_s_vd, p=2, dim=2)
        feat_s_angle = torch.bmm(norm_feat_s_vd, norm_feat_s_vd.transpose(1, 2)).view(-1)

        loss = F.smooth_l1_loss(feat_s_angle, feat_t_angle)

        return loss

    def pdist(self, feat, squared=False, eps=1e-12):
        feat_square = feat.pow(2).sum(dim=1)
        feat_prod   = torch.mm(feat, feat.t())
        feat_dist   = (feat_square.unsqueeze(0) + feat_square.unsqueeze(1) - 2 * feat_prod).clamp(min=eps)

        if not squared:
            feat_dist = feat_dist.sqrt()

        feat_dist = feat_dist.clone()
        feat_dist[range(len(feat)), range(len(feat))] = 0

        return feat_dist

知识蒸馏算法汇总

10、AB

论文链接:https://arxiv.org/pdf/1811.03233.pdf
代码:

from __future__ import absolute_import
from __future__ import print_function
from __future__ import division
import torch
import torch.nn as nn
import torch.nn.functional as F

class AB(nn.Module):
    '''
    Knowledge Transfer via Distillation of Activation Boundaries Formed by Hidden Neurons
    https://arxiv.org/pdf/1811.03233.pdf
    '''
    def __init__(self, margin):
        super(AB, self).__init__()

        self.margin = margin

    def forward(self, fm_s, fm_t):

        loss = ((fm_s + self.margin).pow(2) * ((fm_s > -self.margin) & (fm_t  0)).float() +
                (fm_s - self.margin).pow(2) * ((fm_s  self.margin) & (fm_t > 0)).float())
        loss = loss.mean()

        return loss

11、SP

论文链接:https://arxiv.org/pdf/1907.09682.pdf
代码:

from __future__ import absolute_import
from __future__ import print_function
from __future__ import division
import torch
import torch.nn as nn
import torch.nn.functional as F

class SP(nn.Module):
    '''
    Similarity-Preserving Knowledge Distillation
    https://arxiv.org/pdf/1907.09682.pdf
    '''
    def __init__(self):
        super(SP, self).__init__()

    def forward(self, fm_s, fm_t):
        fm_s = fm_s.view(fm_s.size(0), -1)
        G_s  = torch.mm(fm_s, fm_s.t())
        norm_G_s = F.normalize(G_s, p=2, dim=1)

        fm_t = fm_t.view(fm_t.size(0), -1)
        G_t  = torch.mm(fm_t, fm_t.t())
        norm_G_t = F.normalize(G_t, p=2, dim=1)

        loss = F.mse_loss(norm_G_s, norm_G_t)

        return loss

12、Sobolev

论文链接:https://arxiv.org/pdf/1706.04859.pdf
代码:

from __future__ import absolute_import
from __future__ import print_function
from __future__ import division
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import grad

class Sobolev(nn.Module):
    '''
    Sobolev Training for Neural Networks
    https://arxiv.org/pdf/1706.04859.pdf

    Knowledge Transfer with Jacobian Matching
    http://de.arxiv.org/pdf/1803.00443
    '''
    def __init__(self):
        super(Sobolev, self).__init__()

    def forward(self, out_s, out_t, img, target):
        target_out_s = torch.gather(out_s, 1, target.view(-1, 1))
        grad_s       = grad(outputs=target_out_s, inputs=img,
                            grad_outputs=torch.ones_like(target_out_s),
                            create_graph=True, retain_graph=True, only_inputs=True)[0]
        norm_grad_s  = F.normalize(grad_s.view(grad_s.size(0), -1), p=2, dim=1)

        target_out_t = torch.gather(out_t, 1, target.view(-1, 1))
        grad_t       = grad(outputs=target_out_t, inputs=img,
                            grad_outputs=torch.ones_like(target_out_t),
                            create_graph=True, retain_graph=True, only_inputs=True)[0]
        norm_grad_t  = F.normalize(grad_t.view(grad_t.size(0), -1), p=2, dim=1)

        loss = F.mse_loss(norm_grad_s, norm_grad_t.detach())

        return loss

13、BSS

论文链接:https://arxiv.org/pdf/1805.05532.pdf
代码:

from __future__ import absolute_import
from __future__ import print_function
from __future__ import division
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd.gradcheck import zero_gradients
'''
Modified by https://github.com/bhheo/BSS_distillation
'''

def reduce_sum(x, keepdim=True):
    for d in reversed(range(1, x.dim())):
        x = x.sum(d, keepdim=keepdim)
    return x

def l2_norm(x, keepdim=True):
    norm = reduce_sum(x*x, keepdim=keepdim)
    return norm.sqrt()

class BSS(nn.Module):
    '''
    Knowledge Distillation with Adversarial Samples Supporting Decision Boundary
    https://arxiv.org/pdf/1805.05532.pdf
    '''
    def __init__(self, T):
        super(BSS, self).__init__()
        self.T = T

    def forward(self, attacked_out_s, attacked_out_t):
        loss = F.kl_div(F.log_softmax(attacked_out_s/self.T, dim=1),
                        F.softmax(attacked_out_t/self.T, dim=1),
                        reduction='batchmean')

        return loss

class BSSAttacker():
    def __init__(self, step_alpha, num_steps, eps=1e-4):
        self.step_alpha = step_alpha
        self.num_steps = num_steps
        self.eps = eps

    def attack(self, model, img, target, attack_class):
        img = img.detach().requires_grad_(True)

        step = 0
        while step < self.num_steps:
            zero_gradients(img)
            _, _, _, _, _, output = model(img)

            score = F.softmax(output, dim=1)
            score_target = score.gather(1, target.unsqueeze(1))
            score_attack_class = score.gather(1, attack_class.unsqueeze(1))

            loss = (score_attack_class - score_target).sum()
            loss.backward()

            step_alpha = self.step_alpha * (target == output.max(1)[1]).float()
            step_alpha = step_alpha.unsqueeze(1).unsqueeze(1).unsqueeze(1)
            if step_alpha.sum() == 0:
                break

            pert = (score_target - score_attack_class).unsqueeze(1).unsqueeze(1)
            norm_pert = step_alpha * (pert + self.eps) * img.grad / l2_norm(img.grad)

            step_adv = img + norm_pert
            step_adv = torch.clamp(step_adv, -2.5, 2.5)
            img.data = step_adv.data

            step += 1

        return img

14、CC

论文链接:http://openaccess.thecvf.com/content_ICCV_2019/papers/Peng_Correlation_Congruence_for_Knowledge_Distillation_ICCV_2019_paper.pdf
代码:

from __future__ import absolute_import
from __future__ import print_function
from __future__ import division
import torch
import torch.nn as nn
import torch.nn.functional as F
import math

'''
CC with P-order Taylor Expansion of Gaussian RBF kernel
'''
class CC(nn.Module):
    '''
    Correlation Congruence for Knowledge Distillation
    http://openaccess.thecvf.com/content_ICCV_2019/papers/
    Peng_Correlation_Congruence_for_Knowledge_Distillation_ICCV_2019_paper.pdf
    '''
    def __init__(self, gamma, P_order):
        super(CC, self).__init__()
        self.gamma = gamma
        self.P_order = P_order

    def forward(self, feat_s, feat_t):
        corr_mat_s = self.get_correlation_matrix(feat_s)
        corr_mat_t = self.get_correlation_matrix(feat_t)

        loss = F.mse_loss(corr_mat_s, corr_mat_t)

        return loss

    def get_correlation_matrix(self, feat):
        feat = F.normalize(feat, p=2, dim=-1)
        sim_mat  = torch.matmul(feat, feat.t())
        corr_mat = torch.zeros_like(sim_mat)

        for p in range(self.P_order+1):
            corr_mat += math.exp(-2*self.gamma) * (2*self.gamma)**p / \
                        math.factorial(p) * torch.pow(sim_mat, p)

        return corr_mat

15、LwM

论文链接:https://arxiv.org/pdf/1811.08051.pdf
代码:

from __future__ import absolute_import
from __future__ import print_function
from __future__ import division
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import grad

'''
LwM is originally an incremental learning method with
classification/distillation/attention distillation losses.

Here, LwM is only defined as the Grad-CAM based attention distillation.

'''
class LwM(nn.Module):
    '''
    Learning without Memorizing
    https://arxiv.org/pdf/1811.08051.pdf
    '''
    def __init__(self):
        super(LwM, self).__init__()

    def forward(self, out_s, fm_s, out_t, fm_t, target):
        target_out_t = torch.gather(out_t, 1, target.view(-1, 1))
        grad_fm_t    = grad(outputs=target_out_t, inputs=fm_t,
                            grad_outputs=torch.ones_like(target_out_t),
                            create_graph=True, retain_graph=True, only_inputs=True)[0]
        weights_t = F.adaptive_avg_pool2d(grad_fm_t, 1)
        cam_t = torch.sum(torch.mul(weights_t, grad_fm_t), dim=1, keepdim=True)
        cam_t = F.relu(cam_t)
        cam_t = cam_t.view(cam_t.size(0), -1)
        norm_cam_t = F.normalize(cam_t, p=2, dim=1)

        target_out_s = torch.gather(out_s, 1, target.view(-1, 1))
        grad_fm_s    = grad(outputs=target_out_s, inputs=fm_s,
                            grad_outputs=torch.ones_like(target_out_s),
                            create_graph=True, retain_graph=True, only_inputs=True)[0]
        weights_s = F.adaptive_avg_pool2d(grad_fm_s, 1)
        cam_s = torch.sum(torch.mul(weights_s, grad_fm_s), dim=1, keepdim=True)
        cam_s = F.relu(cam_s)
        cam_s = cam_s.view(cam_s.size(0), -1)
        norm_cam_s = F.normalize(cam_s, p=2, dim=1)

        loss = F.l1_loss(norm_cam_s, norm_cam_t.detach())

        return loss

16、IRG

论文链接:http://openaccess.thecvf.com/content_CVPR_2019/papers/Liu_Knowledge_Distillation_via_Instance_Relationship_Graph_CVPR_2019_paper.pdf
代码:

from __future__ import absolute_import
from __future__ import print_function
from __future__ import division
import torch
import torch.nn as nn
import torch.nn.functional as F

class IRG(nn.Module):
    '''
    Knowledge Distillation via Instance Relationship Graph
    http://openaccess.thecvf.com/content_CVPR_2019/papers/
    Liu_Knowledge_Distillation_via_Instance_Relationship_Graph_CVPR_2019_paper.pdf

    The official code is written by Caffe
    https://github.com/yufanLIU/IRG
    '''
    def __init__(self, w_irg_vert, w_irg_edge, w_irg_tran):
        super(IRG, self).__init__()

        self.w_irg_vert = w_irg_vert
        self.w_irg_edge = w_irg_edge
        self.w_irg_tran = w_irg_tran

    def forward(self, irg_s, irg_t):
        fm_s1, fm_s2, feat_s, out_s = irg_s
        fm_t1, fm_t2, feat_t, out_t = irg_t

        loss_irg_vert = F.mse_loss(out_s, out_t)

        irg_edge_feat_s = self.euclidean_dist_feat(feat_s, squared=True)
        irg_edge_feat_t = self.euclidean_dist_feat(feat_t, squared=True)
        irg_edge_fm_s1  = self.euclidean_dist_fm(fm_s1, squared=True)
        irg_edge_fm_t1  = self.euclidean_dist_fm(fm_t1, squared=True)
        irg_edge_fm_s2  = self.euclidean_dist_fm(fm_s2, squared=True)
        irg_edge_fm_t2  = self.euclidean_dist_fm(fm_t2, squared=True)
        loss_irg_edge = (F.mse_loss(irg_edge_feat_s, irg_edge_feat_t) +
                         F.mse_loss(irg_edge_fm_s1,  irg_edge_fm_t1 ) +
                         F.mse_loss(irg_edge_fm_s2,  irg_edge_fm_t2 )) / 3.0

        irg_tran_s = self.euclidean_dist_fms(fm_s1, fm_s2, squared=True)
        irg_tran_t = self.euclidean_dist_fms(fm_t1, fm_t2, squared=True)
        loss_irg_tran = F.mse_loss(irg_tran_s, irg_tran_t)

        loss = (self.w_irg_vert * loss_irg_vert +
                self.w_irg_edge * loss_irg_edge +
                self.w_irg_tran * loss_irg_tran)

        return loss

    def euclidean_dist_fms(self, fm1, fm2, squared=False, eps=1e-12):
        '''
        Calculating the IRG Transformation, where fm1 precedes fm2 in the network.
        '''
        if fm1.size(2) > fm2.size(2):
            fm1 = F.adaptive_avg_pool2d(fm1, (fm2.size(2), fm2.size(3)))
        if fm1.size(1) < fm2.size(1):
            fm2 = (fm2[:,0::2,:,:] + fm2[:,1::2,:,:]) / 2.0

        fm1 = fm1.view(fm1.size(0), -1)
        fm2 = fm2.view(fm2.size(0), -1)
        fms_dist = torch.sum(torch.pow(fm1-fm2, 2), dim=-1).clamp(min=eps)

        if not squared:
            fms_dist = fms_dist.sqrt()

        fms_dist = fms_dist / fms_dist.max()

        return fms_dist

    def euclidean_dist_fm(self, fm, squared=False, eps=1e-12):
        '''
        Calculating the IRG edge of feature map.
        '''
        fm = fm.view(fm.size(0), -1)
        fm_square = fm.pow(2).sum(dim=1)
        fm_prod   = torch.mm(fm, fm.t())
        fm_dist   = (fm_square.unsqueeze(0) + fm_square.unsqueeze(1) - 2 * fm_prod).clamp(min=eps)

        if not squared:
            fm_dist = fm_dist.sqrt()

        fm_dist = fm_dist.clone()
        fm_dist[range(len(fm)), range(len(fm))] = 0
        fm_dist = fm_dist / fm_dist.max()

        return fm_dist

    def euclidean_dist_feat(self, feat, squared=False, eps=1e-12):
        '''
        Calculating the IRG edge of feat.
        '''
        feat_square = feat.pow(2).sum(dim=1)
        feat_prod   = torch.mm(feat, feat.t())
        feat_dist   = (feat_square.unsqueeze(0) + feat_square.unsqueeze(1) - 2 * feat_prod).clamp(min=eps)

        if not squared:
            feat_dist = feat_dist.sqrt()

        feat_dist = feat_dist.clone()
        feat_dist[range(len(feat)), range(len(feat))] = 0
        feat_dist = feat_dist / feat_dist.max()

        return feat_dist

17、VID

论文链接:https://openaccess.thecvf.com/content_CVPR_2019/papers/Ahn_Variational_Information_Distillation_for_Knowledge_Transfer_CVPR_2019_paper.pdf
代码:

from __future__ import absolute_import
from __future__ import print_function
from __future__ import division
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np

def conv1x1(in_channels, out_channels):
    return nn.Conv2d(in_channels, out_channels,
                     kernel_size=1, stride=1,
                     padding=0, bias=False)

'''
Modified from https://github.com/HobbitLong/RepDistiller/blob/master/distiller_zoo/VID.py
'''
class VID(nn.Module):
    '''
    Variational Information Distillation for Knowledge Transfer
    https://zpascal.net/cvpr2019/Ahn_Variational_Information_Distillation_for_Knowledge_Transfer_CVPR_2019_paper.pdf
    '''
    def __init__(self, in_channels, mid_channels, out_channels, init_var, eps=1e-6):
        super(VID, self).__init__()
        self.eps = eps
        self.regressor = nn.Sequential(*[
                conv1x1(in_channels, mid_channels),

                nn.ReLU(),
                conv1x1(mid_channels, mid_channels),

                nn.ReLU(),
                conv1x1(mid_channels, out_channels),
            ])
        self.alpha = nn.Parameter(
                np.log(np.exp(init_var-eps)-1.0) * torch.ones(out_channels)
            )

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
                if m.bias is not None:
                    nn.init.constant_(m.bias, 0)

    def forward(self, fm_s, fm_t):
        pred_mean = self.regressor(fm_s)
        pred_var  = torch.log(1.0+torch.exp(self.alpha)) + self.eps
        pred_var  = pred_var.view(1, -1, 1, 1)
        neg_log_prob = 0.5 * (torch.log(pred_var) + (pred_mean-fm_t)**2 / pred_var)
        loss = torch.mean(neg_log_prob)

        return loss

18、OFD

论文链接:http://openaccess.thecvf.com/content_ICCV_2019/papers/Heo_A_Comprehensive_Overhaul_of_Feature_Distillation_ICCV_2019_paper.pdf
代码:

from __future__ import absolute_import
from __future__ import print_function
from __future__ import division
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np

'''
Modified from https://github.com/clovaai/overhaul-distillation/blob/master/CIFAR-100/distiller.py
'''
class OFD(nn.Module):
    '''
    A Comprehensive Overhaul of Feature Distillation
    http://openaccess.thecvf.com/content_ICCV_2019/papers/
    Heo_A_Comprehensive_Overhaul_of_Feature_Distillation_ICCV_2019_paper.pdf
    '''
    def __init__(self, in_channels, out_channels):
        super(OFD, self).__init__()
        self.connector = nn.Sequential(*[
                nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0, bias=False),
                nn.BatchNorm2d(out_channels)
            ])

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
                if m.bias is not None:
                    nn.init.constant_(m.bias, 0)
            elif isinstance(m, nn.BatchNorm2d):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)

    def forward(self, fm_s, fm_t):
        margin = self.get_margin(fm_t)
        fm_t = torch.max(fm_t, margin)
        fm_s = self.connector(fm_s)

        mask = 1.0 - ((fm_s  fm_t) & (fm_t  0.0)).float()
        loss = torch.mean((fm_s - fm_t)**2 * mask)

        return loss

    def get_margin(self, fm, eps=1e-6):
        mask = (fm < 0.0).float()
        masked_fm = fm * mask

        margin = masked_fm.sum(dim=(0,2,3), keepdim=True) / (mask.sum(dim=(0,2,3), keepdim=True)+eps)

        return margin

19、AFD

论文链接:https://openreview.net/pdf?id=ryxyCeHtPB
代码:

from __future__ import absolute_import
from __future__ import print_function
from __future__ import division
import torch
import torch.nn as nn
import torch.nn.functional as F
import math

'''
In the original paper, AFD is one of components of AFDS.

AFDS: Attention Feature Distillation and Selection
AFD:  Attention Feature Distillation
AFS:  Attention Feature Selection

We find the original implementation of attention is unstable, thus we replace it with a SE block.

'''
class AFD(nn.Module):
    '''
    Pay Attention to Features, Transfer Learn Faster CNNs
    https://openreview.net/pdf?id=ryxyCeHtPB
    '''
    def __init__(self, in_channels, att_f):
        super(AFD, self).__init__()
        mid_channels = int(in_channels * att_f)

        self.attention = nn.Sequential(*[
                nn.Conv2d(in_channels, mid_channels, 1, 1, 0, bias=True),
                nn.ReLU(inplace=True),
                nn.Conv2d(mid_channels, in_channels, 1, 1, 0, bias=True)
            ])

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
                if m.bias is not None:
                    nn.init.constant_(m.bias, 0)

    def forward(self, fm_s, fm_t, eps=1e-6):
        fm_t_pooled = F.adaptive_avg_pool2d(fm_t, 1)
        rho = self.attention(fm_t_pooled)

        rho = torch.sigmoid(rho.squeeze())
        rho = rho / torch.sum(rho, dim=1, keepdim=True)

        fm_s_norm = torch.norm(fm_s, dim=(2,3), keepdim=True)
        fm_s      = torch.div(fm_s, fm_s_norm+eps)
        fm_t_norm = torch.norm(fm_t, dim=(2,3), keepdim=True)
        fm_t      = torch.div(fm_t, fm_t_norm+eps)

        loss = rho * torch.pow(fm_s-fm_t, 2).mean(dim=(2,3))
        loss = loss.sum(1).mean(0)

        return loss

20、CRD

论文链接:https://openreview.net/pdf?id=SkgpBJrtvS
代码:

from __future__ import absolute_import
from __future__ import print_function
from __future__ import division
import torch
import torch.nn as nn
import torch.nn.functional as F
import math

'''
Modified from https://github.com/HobbitLong/RepDistiller/tree/master/crd
'''
class CRD(nn.Module):
    '''
    Contrastive Representation Distillation
    https://openreview.net/pdf?id=SkgpBJrtvS

    includes two symmetric parts:
    (a) using teacher as anchor, choose positive and negatives over the student side
    (b) using student as anchor, choose positive and negatives over the teacher side

    Args:
        s_dim: the dimension of student's feature
        t_dim: the dimension of teacher's feature
        feat_dim: the dimension of the projection space
        nce_n: number of negatives paired with each positive
        nce_t: the temperature
        nce_mom: the momentum for updating the memory buffer
        n_data: the number of samples in the training set, which is the M in Eq.(19)
    '''
    def __init__(self, s_dim, t_dim, feat_dim, nce_n, nce_t, nce_mom, n_data):
        super(CRD, self).__init__()
        self.embed_s = Embed(s_dim, feat_dim)
        self.embed_t = Embed(t_dim, feat_dim)
        self.contrast = ContrastMemory(feat_dim, n_data, nce_n, nce_t, nce_mom)
        self.criterion_s = ContrastLoss(n_data)
        self.criterion_t = ContrastLoss(n_data)

    def forward(self, feat_s, feat_t, idx, sample_idx):
        feat_s = self.embed_s(feat_s)
        feat_t = self.embed_t(feat_t)
        out_s, out_t = self.contrast(feat_s, feat_t, idx, sample_idx)
        loss_s = self.criterion_s(out_s)
        loss_t = self.criterion_t(out_t)
        loss = loss_s + loss_t

        return loss

class Embed(nn.Module):
    def __init__(self, in_dim, out_dim):
        super(Embed, self).__init__()
        self.linear = nn.Linear(in_dim, out_dim)

    def forward(self, x):
        x = x.view(x.size(0), -1)
        x = self.linear(x)
        x = F.normalize(x, p=2, dim=1)

        return x

class ContrastLoss(nn.Module):
    '''
    contrastive loss, corresponding to Eq.(18)
    '''
    def __init__(self, n_data, eps=1e-7):
        super(ContrastLoss, self).__init__()
        self.n_data = n_data
        self.eps = eps

    def forward(self, x):
        bs = x.size(0)
        N  = x.size(1) - 1
        M  = float(self.n_data)

        pos_pair = x.select(1, 0)
        log_pos  = torch.div(pos_pair, pos_pair.add(N / M + self.eps)).log_()

        neg_pair = x.narrow(1, 1, N)
        log_neg  = torch.div(neg_pair.clone().fill_(N / M), neg_pair.add(N / M + self.eps)).log_()

        loss = -(log_pos.sum() + log_neg.sum()) / bs

        return loss

class ContrastMemory(nn.Module):
    def __init__(self, feat_dim, n_data, nce_n, nce_t, nce_mom):
        super(ContrastMemory, self).__init__()
        self.N = nce_n
        self.T = nce_t
        self.momentum = nce_mom
        self.Z_t = None
        self.Z_s = None

        stdv = 1. / math.sqrt(feat_dim / 3.)
        self.register_buffer('memory_t', torch.rand(n_data, feat_dim).mul_(2 * stdv).add_(-stdv))
        self.register_buffer('memory_s', torch.rand(n_data, feat_dim).mul_(2 * stdv).add_(-stdv))

    def forward(self, feat_s, feat_t, idx, sample_idx):
        bs = feat_s.size(0)
        feat_dim = self.memory_s.size(1)
        n_data = self.memory_s.size(0)

        weight_s = torch.index_select(self.memory_s, 0, sample_idx.view(-1)).detach()
        weight_s = weight_s.view(bs, self.N + 1, feat_dim)
        out_t = torch.bmm(weight_s, feat_t.view(bs, feat_dim, 1))
        out_t = torch.exp(torch.div(out_t, self.T)).squeeze().contiguous()

        weight_t = torch.index_select(self.memory_t, 0, sample_idx.view(-1)).detach()
        weight_t = weight_t.view(bs, self.N + 1, feat_dim)
        out_s = torch.bmm(weight_t, feat_s.view(bs, feat_dim, 1))
        out_s = torch.exp(torch.div(out_s, self.T)).squeeze().contiguous()

        if self.Z_t is None:
            self.Z_t = (out_t.mean() * n_data).detach().item()
        if self.Z_s is None:
            self.Z_s = (out_s.mean() * n_data).detach().item()

        out_t = torch.div(out_t, self.Z_t)
        out_s = torch.div(out_s, self.Z_s)

        with torch.no_grad():
            pos_mem_t = torch.index_select(self.memory_t, 0, idx.view(-1))
            pos_mem_t.mul_(self.momentum)
            pos_mem_t.add_(torch.mul(feat_t, 1 - self.momentum))
            pos_mem_t = F.normalize(pos_mem_t, p=2, dim=1)
            self.memory_t.index_copy_(0, idx, pos_mem_t)

            pos_mem_s = torch.index_select(self.memory_s, 0, idx.view(-1))
            pos_mem_s.mul_(self.momentum)
            pos_mem_s.add_(torch.mul(feat_s, 1 - self.momentum))
            pos_mem_s = F.normalize(pos_mem_s, p=2, dim=1)
            self.memory_s.index_copy_(0, idx, pos_mem_s)

        return out_s, out_t

21、DML

论文链接:https://openaccess.thecvf.com/content_cvpr_2018/papers/Zhang_Deep_Mutual_Learning_CVPR_2018_paper.pdf
代码:

from __future__ import absolute_import
from __future__ import print_function
from __future__ import division
import torch
import torch.nn as nn
import torch.nn.functional as F

'''
DML with only two networks
'''
class DML(nn.Module):
    '''
    Deep Mutual Learning
    https://zpascal.net/cvpr2018/Zhang_Deep_Mutual_Learning_CVPR_2018_paper.pdf
    '''
    def __init__(self):
        super(DML, self).__init__()

    def forward(self, out1, out2):
        loss = F.kl_div(F.log_softmax(out1, dim=1),
                        F.softmax(out2, dim=1),
                        reduction='batchmean')

        return loss

Original: https://blog.csdn.net/hhhhhhhhhhwwwwwwwwww/article/details/127802486
Author: AI浩
Title: 知识蒸馏算法汇总

原创文章受到原创版权保护。转载请注明出处:https://www.johngo689.com/653077/

转载文章受原作者版权保护。转载请注明原作者出处!

(0)

大家都在看

亲爱的 Coder【最近整理,可免费获取】👉 最新必读书单  | 👏 面试题下载  | 🌎 免费的AI知识星球