Adam是通过梯度的一阶矩和二阶矩自适应的控制每个参数的学习率的大小。

adam的初始化
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8,
weight_decay=0, amsgrad=False):
Args:
params (iterable): iterable of parameters to optimize or dicts defining
parameter groups
lr (float, optional): learning rate (default: 1e-3)
betas (Tuple[float, float], optional): coefficients used for computing
running averages of gradient and its square (default: (0.9, 0.999))
eps (float, optional): term added to the denominator to improve
numerical stability (default: 1e-8)
weight_decay (float, optional): weight decay (
Original: https://blog.csdn.net/qq_40107571/article/details/126018026
Author: Mick..
Title: torch.optim.Adam() 函数用法
原创文章受到原创版权保护。转载请注明出处:https://www.johngo689.com/652271/
转载文章受原作者版权保护。转载请注明原作者出处!