Unicode、UTF-8、UTF-16 终于懂了

Unicode、UTF-8、UTF-16 终于懂了

计算机起源于美国,上个世纪,他们对英语字符与二进制位之间的关系做了统一规定,并制定了一套字符编码规则,这套编码规则被称为ASCII编码

ASCII 编码一共定义了128个字符的编码规则,用七位二进制表示 ( 0x00 – 0x7F ), 这些字符组成的集合就叫做 ASCII 字符集

随着计算机的普及,在不同的地区和国家又出现了很多字符编码,比如: 大陆的 GB2312、港台的 BIG5, 日本的 Shift JIS等等

由于字符编码不同,计算机在不同国家之间的交流变得很困难,经常会出现乱码的问题,比如:对于同一个二进制数据,不同的编码会解析出不同的字符

当互联网迅猛发展,地域限制打破之后,人们迫切的希望有一种统一的规则, 对所有国家和地区的字符进行编码,于是 Unicode 就出现了

Unicode 简介

Unicode 是国际标准字符集,它将世界各种语言的每个字符定义一个唯一的编码,以满足跨语言、跨平台的文本信息转换

Unicode 字符集的编码范围是 0x0000 – 0x10FFFF , 可以容纳一百多万个字符, 每个字符都有一个独一无二的编码,也即每个字符都有一个二进制数值和它对应,这里的二进制数值也叫 码点 , 比如:汉字 “中” 的 码点是 0x4E2D, 大写字母 A 的码点是 0x41, 具体字符对应的 Unicode 编码可以查询 Unicode字符编码表

字符集和字符编码

字符集是很多个字符的集合,例如 GB2312 是简体中文的字符集,它收录了六千多个常用的简体汉字及一些符号,数字,拼音等字符

字符编码是 字符集的一种实现方式,把字符集中的字符映射为特定的字节或字节序列,它是一种规则

比如:Unicode 只是字符集,UTF-8、UTF-16、UTF-32 才是真正的字符编码规则

Unicode 字符存储

Unicode 是一个符号集, 它只规定了每个符号的二进制值,但是符号具体如何存储它并没有规定

前面提到, Unicode 字符集的编码范围是 0x0000 – 0x10FFFF,因此需要 1 到 3 个字节来表示

那么,对于三个字节的 Unicode字符,计算机怎么知道它表示的是一个字符而不是三个字符呢 ?

如果所有字符都用三个字节表示,那么对于那些一个字节就能表示的字符来说,有两个字节是无意义的,对于存储来说,这是极大的浪费,假如 , 一个普通的文本, 大部分字符都只需一个字节就能表示,现在如果需要三个字节才能表示,文本的大小会大出三倍左右

因此,Unicode 出现了多种存储方式,常见的有 UTF-8、UTF-16、UTF-32,它们分别用不同的二进制格式来表示 Unicode 字符

UTF-8、UTF-16、UTF-32 中的 “UTF” 是 “Unicode Transformation Format” 的缩写,意思是”Unicode 转换格式”,后面的数
字表明至少使用多少个比特位来存储字符, 比如:UTF-8 最少需要8个比特位也就是一个字节来存储,对应的, UTF-16 和 UTF-32 分别需要最少 2 个字节 和 4 个字节来存储

UTF-8 编码

UTF-8: 是一种变长字符编码,被定义为将码点编码为 1 至 4 个字节,具体取决于码点数值中有效二进制位的数量

UTF-8 的编码规则:

  1. 对于单字节的符号,字节的第一位设为 0,后面 7 位为这个符号的 Unicode 码。因此对于英语字母,UTF-8 编码和 ASCII 码是相同的, 所以 UTF-8 能兼容 ASCII 编码,这也是互联网普遍采用 UTF-8 的原因之一
  2. 对于 n 字节的符号( n > 1),第一个字节的前 n 位都设为 1,第 n + 1 位设为 0,后面字节的前两位一律设为 10 。剩下的没有提及的二进制位,全部为这个符号的 Unicode 码

下表是Unicode编码对应UTF-8需要的字节数量以及编码格式

Unicode编码范围(16进制) UTF-8编码方式(二进制) 000000 – 00007F
0

xxxxxxx ASCII码 000080 – 0007FF
110

xxxxx
10

xxxxxx 000800 – 00FFFF
1110

xxxx
10

xxxxxx
10

xxxxxx 01 0000 – 10 FFFF
11110

xxx
10

xxxxxx
10

xxxxxx
10

xxxxxx

表格中第一列是Unicode编码的范围,第二列是对应UTF-8编码方式,其中红色的二进制 “1”“0” 是固定的前缀, 字母 x 表示可用编码的二进制位

根据上面表格,要解析 UTF-8 编码就很简单了,如果一个字节第一位是 0 ,则这个字节就是一个单独的字符,如果第一位是 1 ,则连续有多少个 1 ,就表示当前字符占用多少个字节

下面以 “中” 字 为例来说明 UTF-8 的编码,具体的步骤如下图, 为了便于说明,图中左边加了 1,2,3,4 的步骤编号

Unicode、UTF-8、UTF-16 终于懂了

首先查询 “中” 字的 Unicode 码 0x4E2D, 转成二进制, 总共有 16 个二进制位, 具体如上图 步骤1 所示

通过前面的 Unicode 编码和 UTF-8 编码的表格知道,Unicode 码 0x4E2D 对应 000800 – 00FFFF 的范围,所以, “中” 字的 UTF-8 编码 需要 3 个字节,即格式是 1110xxxx 10xxxxxx 10xxxxxx

然后从 “中” 字的最后一个二进制位开始,按照从后向前的顺序依次填入格式中的 x 字符,多出的二进制补为 0, 具体如上图 步骤2、步骤3 所示

于是,就得到了 “中” 的 UTF-8 编码是 1110 0100 10 111000 10 101101, 转换成十六进制就是 0xE4B8AD, 具体如上图 步骤4 所示

UTF-16 编码

UTF-16 也是一种变长字符编码, 这种编码方式比较特殊, 它将字符编码成 2 字节 或者 4 字节

具体的编码规则如下:

  1. 对于 Unicode 码小于 0x10000 的字符, 使用 2 个字节存储,并且是直接存储 Unicode 码,不用进行编码转换
  2. 对于 Unicode 码在 0x100000x10FFFF 之间的字符,使用 4 个字节存储,这 4 个字节分成前后两部分,每个部分各两个字节,其中,前面两个字节的前 6 位二进制固定为 110110,后面两个字节的前 6 位二进制固定为 110111, 前后部分各剩余 10 位二进制表示符号的 Unicode 码 减去 0x10000 的结果
  3. 大于 0x10FFFF 的 Unicode 码无法用 UTF-16 编码

下表是Unicode编码对应UTF-16编码格式

Unicode编码范围(16进制) 具体Unicode码(二进制) UTF-16编码方式(二进制) 字节 0000 0000 – 0000 FFFF xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx 2 0001 0000 – 0010 FFFF yy yyyyyyyy xx xxxxxxxx
110110

yy yyyyyyyy
110111

xx xxxxxxxx 4

表格中第一列是Unicode编码的范围,第二列是 具体Unicode码的二进制 ( 第二行的第二列表示的是 Unicode 码 减去 0x10000 后的二进制 ) , 第三列是对应UTF-16编码方式,其中红色的二进制 “1”“0” 是固定的前缀, 字母 xy 表示可用编码的二进制位, 第四列表示 编码占用的字节数

前面提到过, “中” 字的 Unicode 码是 4E2D, 它小于 0x10000,根据表格可知,它的 UTF-16 编码占两个字节,并且和 Unicode 码相同,所以 “中” 字的 UTF-16 编码为 4E2D

我从 Unicode字符表网站 找了一个老的南阿拉伯字母, 它的 Unicode 码是: 0x10A6F , 可以访问 https://unicode-table.com/cn/10A6F/ 查看字符的说明, Unicode 码对应的字符如下图所示

Unicode、UTF-8、UTF-16 终于懂了

下面以这个 老的南阿拉伯字母的 Unicode 码 0x10A6F 为例来说明 UTF-16 4 字节的编码,具体步骤如下,为了便于说明,图中左边加了 1,2,3,4 、5 的步骤编号

Unicode、UTF-8、UTF-16 终于懂了

首先把 Unicode 码 0x10A6F 转成二进制, 对应上图的 步骤 1

然后把 Unicode 码 0x10A6F 减去 0x10000, 结果为 0xA6F 并把这个值转成二进制 00 00000010 10 01101111,对应上图的 步骤 2

然后 从二进制 00 00000010 10 01101111 的最后一个二进制为开始,按照从后向前的顺序依次填入格式中的 xy 字符,多出的二进制补为 0, 对应上图的 步骤 3、 步骤 4

于是,就计算出了 Unicode 码 0x10A6F 的 UTF-16 编码是 110110 00 00000010 110111 10 01101111 , 转换成十六进制就是 0xD802DE6F, 对应上图的 步骤 5

UTF-32 编码

UTF-32 是固定长度的编码,始终占用 4 个字节,足以容纳所有的 Unicode 字符,所以直接存储 Unicode 码即可,不需要任何编码转换。虽然浪费了空间,但提高了效率。

UTF-8、UTF-16、UTF-32 之间如何转换

前面介绍过,UTF-8、UTF-16、UTF-32 是 Unicode 码表示成不同的二进制格式的编码规则,同样,通过这三种编码的二进制表示,也能获得对应的 Unicode 码,有了字符的 Unicode 码,按照上面介绍的 UTF-8、UTF-16、UTF-32 的编码方法 就能转换成任一种编码了

UTF 字节序

最小编码单元是多字节才会有字节序的问题存在,UTF-8 最小编码单元是一字节,所以 它是没有字节序的问题,UTF-16 最小编码单元是 2 个字节,在解析一个 UTF-16 字符之前,需要知道每个编码单元的字节序

比如:前面提到过, “中” 字的 Unicode 码是 4E2D, “ⵎ” 字符的 Unicode 码是 2D4E, 当我们收到一个 UTF-16 字节流 4E2D 时,计算机如何识别它表示的是字符 “中” 还是 字符 “ⵎ” 呢 ?

所以,对于多字节的编码单元,需要有一个标记显式的告诉计算机,按照什么样的顺序解析字符,也就是字节序,字节序分为 大端字节序 和 小端字节序

小端字节序简写为 LE( Little-Endian ), 表示 低位字节在前,高位字节在后, 高位字节保存在内存的高地址端,而低位字节保存在内存的低地址端

大端字节序简写为 BE( Big-Endian ), 表示 高位字节在前,低位字节在后,高位字节保存在内存的低地址端,低位字节保存在在内存的高地址端

下面以 0x4E2D 为例来说明大端和小端,具体参见下图:

Unicode、UTF-8、UTF-16 终于懂了

数据是从高位字节到低位字节显示的,这也更符合人们阅读数据的习惯,而内存地址是从低地址向高地址增加

所以,字符 0x4E2D 数据的高位字节是 4E,低位字节是 2D

按照大端字节序的高位字节保存内存低地址端的规则, 4E 保存到低内存地址 0x10001 上, 2D 则保存到高内存地址 0x10002

对于小端字节序,则正好相反,数据的高位字节保存到内存的高地址端,低位字节保存到内存低地址端的,所以 4E 保存到高内存地址 0x10002 上, 2D 则保存到低内存地址 0x10001

BOM

BOM 是 byte-order mark 的缩写,是 “字节序标记” 的意思, 它常被用来当做标识文件是以 UTF-8、UTF-16 或 UTF-32 编码的标记

在 Unicode 编码中有一个叫做 “零宽度非换行空格” 的字符 ( ZERO WIDTH NO-BREAK SPACE ), 用字符 FEFF 来表示

对于 UTF-16 ,如果接收到以 FE FF 开头的字节流, 就表明是大端字节序,如果接收到 FF FE, 就表明字节流 是小端字节序

UTF-8 没有字节序问题,上述字符只是用来标识它是 UTF-8 文件,而不是用来说明字节顺序的。”零宽度非换行空格” 字符 的 UTF-8 编码是 EF BB BF, 所以如果接收到以 EF BB BF 开头的字节流,就知道这是UTF-8 文件

下面的表格列出了不同 UTF 格式的固定文件头

UTF编码 固定文件头 UTF-8 EF BB BF UTF-16LE FF FE UTF-16BE FE FF UTF-32LE FF FE 00 00 UTF-32BE 00 00 FE FF

根据上面的 固定文件头,下面列出了 “中” 字在文件中的存储 ( 包含文件头 )

编码 固定文件头
Unicode 编码

0X004E2D
UTF-8 EF BB BF

E4 B8 AD
UTF-16BE FE FF

4E 2D
UTF-16LE FF FE

2D 4E
UTF-32BE 00 00 FE FF

00 00 4E 2D
UTF-32LE FF FE 00 00

2D 4E 00 00

常见的字符编码的问题

  • *Redis 中文key的显示

有时候我们需要向redis中写入含有中文的数据,然后在查看数据,但是会看到一些其他的字符,而不是我们写入的中文

Unicode、UTF-8、UTF-16 终于懂了

上图中,我们向redis 写入了一个 “中” 字,通过 get 命令查看的时候无法显示我们写入的 “中” 字

这时候加一个 –raw 参数,重新启动 redis-cli 即可,也即 执行 redis-cli –raw 命令启动redis客户端,具体的如下图所示

Unicode、UTF-8、UTF-16 终于懂了
  • *MySQL 中的 utf8 和 utf8mb4

MySQL 中的 “utf8” 实际上不是真正的 UTF-8, “utf8” 只支持每个字符最多 3 个字节, 对于超过 3 个字节的字符就会出错, 而真正的 UTF-8 至少要支持 4 个字节

MySQL 中的 “utf8mb4” 才是真正的 UTF-8

下面以 test 表为例来说明, 表结构如下:

mysql> show create table test\G
*************************** 1. row ***************************
       Table: test
Create Table: CREATE TABLE test (
  name char(32) NOT NULL
) ENGINE=InnoDB DEFAULT CHARSET=utf8
1 row in set (0.00 sec)

test 表分别插入 “中” 字 和 Unicode 码为 0x10A6F 的字符,这个字符需要从 https://unicode-table.com/cn/10A6F/ 直接复制到 MySQL 控制台上,手工输入会无效,具体的执行结果如下图:

Unicode、UTF-8、UTF-16 终于懂了

从上图可以看出,插入 “中” 字 成功,插入 0x10A6F 字符失败,错误提示无效的字符串, \xF0\X90\XA9\xAF 正是 0x10A6F 字符的 UTF-8 编码,占用 4 个字节, 因为 MySQL 的 utf8 编码最多只支持 3 个字节,所以插入会失败

test 表的字符集改成 utf8mb4 , 排序规则 改成 utf8bm4_unicode_ci, 具体如下图所示:

Unicode、UTF-8、UTF-16 终于懂了

字符集和排序方式修改之后,再次插入 0x10A6F 字符, 结果是成功的,具体执行结果如下图所示

Unicode、UTF-8、UTF-16 终于懂了

上图中, set names utf8mb4 是为了测试方便,临时修改当前会话的字符集,以便保持和 服务器一致,实际解决这个问题需要修改 my.cnf 配置中 服务器和客户端的字符集

小结

本文从字符编码的历史介绍了 Unicode 出现的原因,接着介绍了 Unicode 字符集中 三种不同的编码方式: UTF-8、UTF-16、UTF-32 以及它们的的编码方法,紧接着介绍了 字节序、BOM ,最后讲到了字符集在 MySQL 和 Redis 应用中常见的问题以及解决方案 ,更多关于 Unicode 的介绍请参考 Unicode 的 RFC 文档

Original: https://www.cnblogs.com/wanng/p/utf8-utf16-utf32.html
Author: Linux开发那些事儿
Title: Unicode、UTF-8、UTF-16 终于懂了

原创文章受到原创版权保护。转载请注明出处:https://www.johngo689.com/607074/

转载文章受原作者版权保护。转载请注明原作者出处!

(0)

大家都在看

  • LINUX 终端显示错乱问题

    问题描述 Linux Terminal进入vi/vim界面退出后会覆盖前面的显示,如下图: 解决办法 找一台显示正常和的机器(和故障机器架构一致),去家目录查看.bashrc文件,…

    Linux 2023年5月27日
    086
  • shell: 获取每行文本的最后几个字符

    tail方式 tail参数-c就可以获取最后的几个字节 -c, –bytes=[+]NUM output the last NUM bytes; or use -c +NUM t…

    Linux 2023年6月7日
    0115
  • Pod控制器类型

    Pod是kubernetes的最小管理单元,在kubernetes中,按照pod的创建方式可以将其分为两类: 自主式pod:kubernetes直接创建出来的Pod,这种pod删除…

    Linux 2023年6月6日
    0182
  • 了解Redis这个核心数据类型

    string 字符串 tring 类型是二进制安全的,即 string 中可以包含任何数据。 Redis 中的普通 string 采用 raw encoding …

    Linux 2023年5月28日
    097
  • 购买服务器与域名利用tomcat快速搭建个人网站

    基于Linux环境下的个人网站搭建 一.下载工具 二.购买云服务器 三.安装配置服务器软件 配置环境变量 四.购买域名并设置域名解析 五.上传网站文件 一.下载工具 远程主机:1….

    Linux 2023年6月7日
    0123
  • django 将原本数据库中的表导入models中

    django 将原本数据库中的表导入models中 python manage.py inspectdb > app名/models.py 在执行过程中,如果发现出现报安装m…

    Linux 2023年6月13日
    0103
  • CentOS7.6 单用户模式下修改root密码

    404. 抱歉,您访问的资源不存在。 可能是网址有误,或者对应的内容被删除,或者处于私有状态。 代码改变世界,联系邮箱 contact@cnblogs.com 园子的商业化努力-困…

    Linux 2023年6月7日
    0100
  • ruoyi接口权限校验

    此文章属于ruoyi项目实战系列 ruoyi系统在前端主要通过权限字符包含与否来动态显示目录和按钮。为了防止通过http请求绕过权限限制,后端接口也需要进行相关权限设计。 @Pre…

    Linux 2023年6月7日
    0152
  • 搭建NFS文件共享系统

    1、概述: NFS(Network File System)意为网络文件系统,它最大的功能就是可以通过网络,让不同的机器不同的操作系统可以共享彼此的文件。简单的讲就是可以挂载远程主…

    Linux 2023年6月7日
    097
  • 基于Docker的redis集群搭建

    Redis集群官方介绍:http://www.redis.cn/topics/cluster-tutorial.html 基于Docker搭建Redis集群 环境:6个节点,三主三…

    Linux 2023年5月28日
    080
  • [20220301]oracle如何定位使用library cache mutex.txt

    [20220301]oracle如何定位使用library cache mutex.txt –//这个问题实际上困扰我很久,我开始以为library cache buc…

    Linux 2023年6月13日
    090
  • Redis在C#中的使用及Redis的封装

    Redis是一款开源的、高性能的键-值存储(key-value store)。它常被称作是一款数据结构服务器(data structure server)。Redis的键值可以包括…

    Linux 2023年5月28日
    090
  • MySQL事务隔离级别

    MySQL事务隔离级别 事务 事务是由单独的一个或者多个SQL语句组成,是一个最小的不可再分割的单元,这一组操作里面的所有的执行,要么全部成功、要么全部不成功。如果有一个执行不成功…

    Linux 2023年6月6日
    0120
  • 聊聊Netty那些事儿之从内核角度看IO模型

    从今天开始我们来聊聊Netty的那些事儿,我们都知道Netty是一个高性能异步事件驱动的网络框架。 它的设计异常优雅简洁,扩展性高,稳定性强。拥有非常详细完整的用户文档。 同时内置…

    Linux 2023年6月6日
    085
  • Django基础学习笔记

    创建一个django项目:命令: django-admin startproject 项目名 进入到项目并创建一个应用:命令: python manage.py startapp …

    Linux 2023年6月6日
    089
  • CPU架构对redis的性能影响

    CPU架构对redis的性能影响 主流CPU架构 一个CPU处理器中通常有多个运行核心,每一个运行核心称为一个物理核,每个物理核都可以运行应用程序。每个物理核都拥有 私有的一级缓存…

    Linux 2023年5月28日
    0110
亲爱的 Coder【最近整理,可免费获取】👉 最新必读书单  | 👏 面试题下载  | 🌎 免费的AI知识星球