关于『数论』:整除理论

「一本书上每多一个公式,就会死掉减少一半读者。」—— 霍金
「这上面每多一个公式,我就会失明一次。」—— JQ

一、整除

  • 若整数(b) 除以非零整数(a) ,商为整数,且余数为零, 我们就说(a) 能整除(b),记作(a\mid b),读作「(a) 整除(b)」或「(b) 能被(a) 整除」。其中,(a) 叫做(b) 的约数(因数),(b) 叫做(a) 的倍数。
  • 否则,我们就说(a) 不能整除(b),记作(a \nmid b)。
  • 整除属于除尽的一种特殊情况。

性质 1(传递性):若 (a\ |\ b,\ b\ |\ c),则 (a\ |\ c)。

[\begin{align} 证:&由题可得: a \mid b,\ b \mid c \&令\ b = ax,\ c = by\ (x, y\in \mathbb{Z}, x \ne 0) \ &\therefore c = ax \cdot y \ &\therefore a \mid c \end{align}]

性质 2: 若 (a\ |\ b,\ a\ |\ c),则 (a\ |\ bx\ \pm cy\ (x, y\in \mathbb{Z}))。

[\begin{align} 证:&由题可得: a \mid b,\ a \mid c \ &令\ b = am,\ c = an\ (x, y\in \mathbb{Z}) \ &\therefore a \mid bx \pm cy \ &\ \ \ \ \Leftrightarrow a\mid amx \pm any \ &\ \ \ \ \Leftrightarrow a\mid a(mx \pm ny) \ &\therefore a \mid bx \pm cy \end{align}]

补充:若 (a\ |\ b_i(i =1,2,\cdots,k)) , 则 (a \mid p_1b_1+p_2b_2+ \cdots+p_kb_k (p_j(j = 1,2\cdots,k) \in \mathbb{Z}))

性质 3:若 (x \in \mathbb{Z}, x \ne 0) 且 (a \mid b) ,则 (ax\mid bx\ (x\in \mathbb{Z}, x \ne 0))。

[\begin{align} 证:&令\ b = am\ (m\in \mathbb{Z},m\ne 0) \ &\therefore 目标 \Leftrightarrow ax\mid amx \ &\therefore ax\mid bx \end{align}]

性质 4:若 (ax + by = 1) ,且 (a \mid k,\ b \mid k),则 (ab \mid k\ (x, y\in \mathbb{Z} 且\ a, b\ne 0))。

[\begin{align} 证:&令\ k = am = bn\ (m, n\in \mathbb{Z}) \ &\because ax + by = 1 \ &\therefore \frac{x}{b} + \frac{y}{a} = \frac{1}{ab} \ &\therefore \frac{k}{ab} = k \cdot (\frac{x}{b} + \frac{y}{a})= \frac{kx}{b} + \frac{ky}{a} = nx + my \ &\therefore 1 \mid \frac{k}{ab} \ &\therefore ab \mid k \end{align}]

性质 5:若 (a = bx + c),则 (b \mid a) 的充分必要条件是 (b \mid c)。

[\begin{align} 证:&若已知\ b \mid c\ 且\ a = bx + c \ &令\ c = bm\ (m\in \mathbb{Z}) \ &\therefore a = bx + c \ &\ \ \ \ \Leftrightarrow a = bx + bm \ &\ \ \ \ \Leftrightarrow a = b(x + m) \ &\therefore b \mid a \ &若已知\ b \mid a\ 且\ a = bx + c \ &令\ a = bn\ (n\in \mathbb{Z}) \ &\therefore bn = bx + c \ &\ \ \ \ \Leftrightarrow c = bm – bx \ &\ \ \ \ \Leftrightarrow c = b(m – x) \ &\therefore b \mid c \end{align}]

注释:

  1. 充分必要条件:充分必要条件也即充要条件。意思是说,如果能从命题 p 推出命题 q,而且也能从命题 q 推出命题 p ,则称 p 是 q 的充分必要条件,且 q 也是 p 的充分必要条件。
  2. 充分条件:如果 A 能推出 B,那么 A 就是 B 的充分条件。
  3. 必要条件:如果没有 A,则必然没有 B;如果有 A 而未必有 B,则 A 就是 B 的必要条件。

性质 6:若 (p \mid a),(q \mid a) 且 ((p, q) = 1),则 (pq \mid a)。

[\begin{align} 证:&设\ a = mp = nq\ (m, n \in \mathbb{Z}) \& 由\ mp = nq\ 可知:p\mid nq \& \because p\ 与\ q\ 互质 \& \therefore p\mid n \& 设\ n = xp\ (x \in \mathbb{Z}) \& \therefore a = nq = xpq \& \therefore pq\mid a \end{align}]

注释:

  1. 为什么要加「((p, q) = 1) (即互质)」?

假若不加互质,是有可能成立的,但并不一定所有情况都成立。举个反🌰——

[3\mid 12\ 且\ 6\mid 12,但\ 3 \times 6 = 18,18\nmid 12。 ]

变式:
若 (p \mid a),(q \mid a) 且 (mp + nq = 1),则 (pq \mid a\ (m, n \in \mathbb{Z})).

解释:其实这个变式和「性质 6」是同理的。
「(mp + nq = 1)」,其实就表达了「 ((p, q) = 1)」(根据裴蜀定理可得,以后会补充)。

习题集 1. 证明:任意奇数的平方减 1 是 8 的倍数。

[\begin{align} 证:&设此奇数为\ 2k + 1\ (k \in \mathbb{Z}) \ & (2k + 1)^2 – 1 \ &= 4k^2 + 4k + 1- 1 \ &= 4k(k + 1) \ &\because8 \mid 4k(k + 1) \ &\therefore 8 \mid (2k + 1)^2 \end{align}]

  1. 证明:当 n 是偶数时,2 | 3^n + 1;当 n 是奇数时,2^2 | 3^n + 1;但无论 n 是偶数还是奇数,对任意正整数 α > 2,都有 2^α ∤ 3^n + 1 (n ∈ N+)。

[\begin{align} 证: \ (1) &\because n \equiv 0\pmod 2 \ &\therefore(3^n + 1)\bmod 2 \ &= [(3^n \bmod 2) + (1 \bmod 2)] \bmod 2 \ &= {[(3 \bmod 2)^n \bmod 2] + 1} \bmod 2 \ &= [(1 \bmod 2) + 1] \bmod 2 \ &= (1 + 1) \bmod 2 \ &= 0 \ (2)&\because n \equiv 1\pmod 2 \ &\therefore(3^n + 1)\bmod 2^2 \ &= [(3^n \bmod 4) + (1 \bmod 4)] \bmod 4 \ &= (3 + 1) \bmod 4 \ &= 0 \ (3)\ &若\ n \equiv 0 \pmod 2 \ &(3^n + 1)\bmod 2^{\alpha} \ &= [(3^n \bmod 2^{\alpha}) + (1 \bmod 2^{\alpha})] \bmod 2^{\alpha} \ &= (1 + 1) \bmod 2^{\alpha} \ &= 2 \bmod 2^{\alpha} \ &\because \alpha > 2 \ &\therefore 2^{\alpha} \gt 4 \ &\therefore 2 \bmod 2^{\alpha} = 2 \ &\therefore2^{\alpha} \nmid (3^n + 1) \ \ &若\ n \equiv 1 \pmod 2 \ &(3^n + 1)\bmod 2^{\alpha} \ &= [(3^n \bmod 2^{\alpha}) + (1 \bmod 2^{\alpha})] \bmod 2^{\alpha} \ &= (3 + 1) \bmod 2^{\alpha} \ &= 4 \bmod 2^{\alpha} \ &\because \alpha > 2 \ &\therefore 2^{\alpha} \gt 4 \ &\therefore 4 \bmod 2^{\alpha} = 4 \ &\therefore 2^{\alpha} \nmid (3^n + 1) \ \ &\therefore 综上,当\ \alpha > 2\ 时,无论\ n\ 是奇数还是偶数,都有\ 2^{\alpha} \nmid (3^n + 1)。 \end{align}]

  1. 感觉显然,过程待补。

There is NOTHING.

  1. 证明:如果 2a + 3b,9a + 5b 中有一个能被 17 整除,那么另外一个也能被 17 整除。

[\begin{align} 证:&若\ 17 \mid 2a + 3b \ &\because 17 \mid 2a + 3b \ &则\ 17 \mid 5 \times(2a + 3b) \ &\therefore 17 \mid 10a + 15b \ &\because (9a + 5b) \times 3 = 27a + 15b = (10a + 15b) + 17a \ &\because 17 \mid 17a \ &又\because 17 \mid 10a + 15b \ &\therefore 17 \mid (10a + 15b) + 17a \ &\therefore 17 \mid (9a + 5b) \times 3 \ &又\because (3, 17) = 1 \ &\therefore 17 \mid 9a + 5b \ \ &若\ 17 \mid 9a + 5b \ &\because 17 \mid 9a + 5b \ &则\ 17 \mid 3 \times(9a + 5b) \ &\therefore 17 \mid 27a + 15b \ &\because (2a + 3b) \times 5 = 10a + 15b = (27a+ 15b) – 17a \ &\because 17 \mid -17a \ &又\because 17 \mid 27a + 15b \ &\therefore 17 \mid (27a + 15b) – 17a \ &\therefore 17 \mid (2a + 3b) \times 5 \ &又\because (5, 17) = 1 \ &\therefore 17 \mid 2a + 3b \end{align}]

  1. x,y,z 均为整数,若 11 ∣ 7x + 2y − 5z,求证:11 ∣ 3x−7y+12z。

[\begin{align} 证:&令\ a = 7x + 2y − 5z,b = 3x – 7y + 12z \ &可构造:3a + 4b = 11(3x − 2y + 3z) \ &则\ 4b = 11 (3x − 2y + 3z ) − 3a \ &\because 11 \mid (11( 3x − 2y + 3z ) − 3a) \ &\therefore 11 \mid 4b \ &\because (11, 4) = 1 \ &\therefore 11\mid b \ &即\ 11\mid (3x−7y+12z) \end{align}]

二、模运算

  • 对于整数(a,b\ (b \ne 0)),求(a) 除以(b) 的余数,记作(a \bmod b)。

[\begin{align} &(a + b) \bmod p = (a \bmod p + b \bmod p) \bmod p \ &(a – b) \bmod p = (a \bmod p – b \bmod p) \bmod p \ &(a \times b) \bmod p = (a \bmod p \times b \bmod p) \bmod p \ &a^b \bmod p = (a \bmod p)^b \bmod p \end{align}]

运算规则 1:((a + b) \bmod p = (a \bmod p + b \bmod p) \bmod p)。

[\begin{align} 证:&令\ a = mp + x, b = np + y\ (m, n, x, y \in \mathbb{Z}\ 且\ x = a \bmod p, y = b \bmod p) \ &\therefore a + b = (mp + x) + (np + y) \ &\ \ \ \ \ \ \ \ \ \ \ \ \ \ = p(m + n) + (x + y) \ &\therefore (a + b) \bmod p = [p(m + n) + (x + y)] \bmod p \ &\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ = (x + y) \bmod p \ &又\because x = a \bmod p, y = b \bmod p \ &\therefore (a + b) \bmod p = (x + y) \bmod p \ &\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ = (a \bmod p + b \bmod p) \bmod p \end{align}]

运算规则 2:((a – b) \bmod p = (a \bmod p – b \bmod p) \bmod p)。

[\begin{align} 证:&令\ a = mp + x, b = np + y\ (m, n, x, y \in \mathbb{Z}\ 且\ x = a \bmod p, y = b \bmod p) \ &\therefore a – b = (mp + x) – (np + y) \ &\ \ \ \ \ \ \ \ \ \ \ \ \ \ = p(m – n) + (x – y) \ &\therefore (a – b) \bmod p = [p(m – n) + (x – y)] \bmod p \ &\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ = (x – y) \bmod p \ &又\because x = a \bmod p, y = b \bmod p \ &\therefore (a – b) \bmod p = (x – y) \bmod p \ &\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ = (a \bmod p – b \bmod p) \bmod p \end{align}]

运算规则 3:((a \times b) \bmod p = (a \bmod p \times b \bmod p) \bmod p)。

[\begin{align} 证:&令\ a = mp + x, b = np + y\ (m, n, x, y \in \mathbb{Z}\ 且\ x = a \bmod p, y = b \bmod p) \ &\therefore a \times b = (mp + x) \times (np + y) \ &\ \ \ \ \ \ \ \ \ \ \ \ \ \ = mnp^2 + mpy + npx + xy \ &\therefore (a \times b) \bmod p = [(mp + x) \times (np + y) ] \bmod p \ &\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ = (mnp^2 + mpy + npx + xy) \bmod p \ &\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ = [p(mnp + my + nx) + xy] \bmod p \ &\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ = xy \bmod p \ &又\because x = a \bmod p, y = b \bmod p \ &\therefore (a \times b) \bmod p = (x \times y) \bmod p \ &\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ = (a \bmod p \times b \bmod p) \bmod p \end{align}]

运算规则 4:(a^b \bmod p = (a \bmod p)^b \bmod p)。

析:可使用多次「运算规则 3」来证明,为节省篇幅,此略。

1.放:若 (a \bmod b = c),则 (ax \bmod bx = cx\ (x \in \mathbb{Z}\ 且\ x \ne 0))。

[\begin{align} 证:&令\ a = mb + c \ &则\ ax \bmod bx \ &\Leftrightarrow (mbx + cx) \bmod bx \ &\Leftrightarrow [(mbx \bmod bx) + (cx \bmod bx)] \bmod bx \ &又\because a \bmod b = c \ &\therefore c \lt b \ &\therefore [(mbx \bmod bx) + (cx \bmod bx)] \bmod bx \ &= (0 + cx) \bmod bx \ &= cx \ &\therefore ax \bmod bx = cx \end{align}]

2.缩:若 (a \bmod b = c),则 (\dfrac{a}{x} \bmod \dfrac{b}{x} = \dfrac{c}{x}\ (x \in \mathbb{Z}\ 且\ x \ne 0))。

[\begin{align} 证:&令\ a = mb + c \ &\therefore \dfrac{a}{x} = \dfrac{mb}{x} + \dfrac{c}{x} \ &又\because a \bmod b = c \ &\therefore c \lt b \ &\therefore \dfrac{c}{x} \lt \dfrac{b}{x} \ &\therefore \dfrac{a}{x} \bmod \dfrac{b}{x} = \dfrac{c}{x} \end{align}]

1.若 (2) 能整除 (a) 的末一位(约定 (0) 可被任意数整除),则 (2 \mid a)。

[\begin{align} 证:&设\ a = 10x + b\ (x, b \in \mathbb{N}\ 且\ 0 \le b \le 9) \ &\therefore a \bmod 2 \ &\Leftrightarrow (10x + b) \bmod 2 \ &= (10x \bmod 2) + (b \bmod 2) \ &\because 2 \mid 10\ 且\ 2 \mid b \ &\therefore 原式 = 0 \end{align}]

2.若 (4) 能整除 (a) 的末两位(约定 (0) 可被任意数整除),则 (4 \mid a)。

[\begin{align} 证:&设\ a = 100x + b\ (x, b \in \mathbb{N}\ 且\ 0 \le b \le 99) \ &\therefore a \bmod 4 \ &\Leftrightarrow (100x + b) \bmod 4 \ &= (100x \bmod 4) + (b \bmod 4) \ &\because 4 \mid 100\ 且\ 4 \mid b \ &\therefore 原式 = 0 \end{align}]

3.若 (8) 能整除 (a) 的末三位(约定 (0) 可被任意数整除),则 (8 \mid a)。

[\begin{align} 证:&设\ a = 1000x + b\ (x, b \in \mathbb{N}\ 且\ 0 \le b \le 999) \ &\therefore a \bmod 8 \ &\Leftrightarrow (1000x + b) \bmod 8 \ &= (1000x \bmod 8) + (b \bmod 8) \ &\because 8 \mid 1000\ 且\ 8 \mid b \ &\therefore 原式 = 0 \end{align}]

4.若 (3) 能整除 (a) 的各个数位上的数之和(约定 (0) 可被任意数整除),则 (3 \mid a)。

[\begin{align} 证:&设\ a = \overline{b_1b_2 \cdots b_n}\ (b_i \in \mathbb{N}\ 且\ 0 \le b_i \le 9\ 且\ b_1 \ne 0) \ &\therefore a = b_1 \times \underbrace{100\cdots00}{n} + b_2 \times \underbrace{100\cdots00}{n – 1} + \cdots + b_{n – 1} \times 10 + b_n \times 1 \ &\therefore a \bmod 3 \ &= (b_1 \times \underbrace{100\cdots00}{n} \bmod 3) + (b_2 \times \underbrace{100\cdots00}{n – 1} \bmod 3) + \cdots + (b_{n – 1} \times 10 \bmod 3) + (b_n \times 1 \bmod 3) \ &= (b_1 \bmod 3) \times (\underbrace{100\cdots00}{n} \bmod 3) + (b_2 \bmod 3) \times (\underbrace{100\cdots00}{n – 1} \bmod 3) + \cdots + (b_{n – 1} \bmod 3) \times (10 \bmod 3) + (b_n \bmod 3) \times (1 \bmod 3) \ &= (b_1 \bmod 3) \times 1 + (b_2 \bmod 3) \times 1 + \cdots + (b_{n – 1} \bmod 3) \times 1+ (b_n \bmod 3) \times 1 \ &= (b_1+ b_2 + \cdots + b_{n – 1} + b_n) \bmod 3 \ &\therefore a \bmod 3 \Leftrightarrow(b_1+ b_2 + \cdots + b_{n – 1} + b_n) \bmod 3 \end{align}]

5.若 (11) 能整除 (a) 的奇数位(从低位向高位数)之和与偶数位之和的差(约定 (0) 可被任意数整除),则 (11 \mid a)。

[\begin{align} 证:&设\ a = \overline{b_1b_2 \cdots b_n}\ (b_i \in \mathbb{N}\ 且\ 0 \le b_i \le 9\ 且\ b_1 \ne 0) \ &\therefore a = b_1 \times \underbrace{100\cdots00}{n} + b_2 \times \underbrace{100\cdots00}{n – 1} + \cdots + b_{n – 1} \times 10 + b_n \ &\therefore a \bmod 11 \ &= (b_1 \times (\underbrace{999\cdots99}{n – 1} + 1) \bmod 11) + (b_2 \times (\underbrace{100\cdots01}{n – 1} – 1) \bmod 11) + \cdots + (b_{n – 1} \times (11 – 1) \bmod 11) + (b_n \bmod 11) \ &= (b_1 \times 1 \bmod 11) + (b_2 \times (-1) \bmod 11) + \cdots + (b_{n – 1} \times (-1) \bmod 11) + (b_n \bmod 11) \ &= (b_1 \bmod 11) – (b_2 \bmod 11) + \cdots – (b_{n – 1} \bmod 11) + (b_n \bmod 11) \ &= (b_1 – b_2 + \cdots – b_{n – 1} + b_n) \bmod 11 \ &= (b_1 + b_3 + \cdots + b_n) – (b_2 + b_4 + \cdots + b_{n – 1}) \bmod 11 \end{align}]

6.若 (7,11,13) 能整除 (a) 的末三位与末三位之前的数所组成的数之差(约定 (0) 可被任意数整除),则 (7 \mid a) 且 (11 \mid a) 且 (13 \mid a)(即 (1001 \mid a))。

[\begin{align} 证:&设\ a = \overline{b_1b_2 \cdots b_n}\ (b_i \in \mathbb{N}\ 且\ 0 \le b_i \le 9\ 且\ b_1 \ne 0) \ &\therefore a \bmod 1001 \ &\Leftrightarrow (\overline{b_1b_2 \cdots b_{n – 3}} \times 1000 + \overline{b_{n – 2}b_{n – 1}b_n}) \bmod 1001 \ &\Leftrightarrow {(\overline{b_1b_2 \cdots b_{n – 3}} \bmod 1001) \times [(1001 – 1) \bmod 1001] + (\overline{b_{n – 2}b_{n – 1}b_n} \bmod 1001)] \bmod 1001 \ &\Leftrightarrow {(\overline{b_1b_2 \cdots b_{n – 3}} \bmod 1001) \times (-1) + (\overline{b_{n – 2}b_{n – 1}b_n} \bmod 1001)] \bmod 1001 \ &\Leftrightarrow (\overline{b_{n – 2}b_{n – 1}b_n} -\overline{b_1b_2 \cdots b_{n – 3}}) \bmod 1001 \end{align}]

三、同余

  • 设 (m) 是一个给定的正整数,若满足 (m \mid a – b),则称 (a) 与 (b) 对模 (m) 同余,记作 (a \equiv b \pmod m)(称为 (a, b) 模 (m) 的同余式)。
  • 若 (m \nmid a – b),则 (a, b) 一定不同余。
  • 若满足 (a = b + km\ (k \in \mathbb{Z})),则 (a) 和 (b) 被 (m) 除时有相同的余数。即:(m \mid a – b \Leftrightarrow a \equiv b \pmod m)。
  • 如果没有特别说明, 模数总是正整数
  • 若 (p = a – b),则 (a \equiv b \pmod p\ (a, b, p \in \mathbb{Z}))。证明:若 p = a – b,则 a≡b(mod p) (a,b,p ∈ Z)

    [\begin{align} 证:&\because a = b + p \ &\therefore a \bmod p \ &\Leftrightarrow (b + p) \bmod p \ &\Leftrightarrow [(b \bmod p) + (p \bmod p)] \bmod p \ &\Leftrightarrow b \bmod p \end{align}]

性质 1(自反性):(a \equiv a \pmod m)。

析:真 · 显然

性质 2(对称性):若 (a \equiv b \pmod p),则 (b \equiv a \pmod p)。

析:真 · 显然

性质 3(传递性):若 (a \equiv b \pmod p),(b \equiv c \pmod p),则 (a \equiv c \pmod p)。

析:真 · 显然

性质 4(同加性):若 (a \equiv b \pmod p),则 ((a + c) \equiv (b + c) \pmod p)。

[\begin{align} 证:&\because a \equiv b \pmod p \ &\therefore p \mid a – b \ &\Rightarrow p \mid a – b + c – c \ &\Rightarrow p \mid (a + c) – (b + c) \ &\therefore (a + c) \equiv (b + c) \pmod p \end{align}]

性质 5(同减性):若 (a \equiv b \pmod p),则 ((a – c) \equiv (b – c) \pmod p)。

[\begin{align} 证:&\because a \equiv b \pmod p \ &\therefore p \mid a – b \ &\Rightarrow p \mid a – b + c – c \ &\Rightarrow p \mid (a – c) – (b – c) \ &\therefore (a – c) \equiv (b – c) \pmod p \end{align}]

性质 6(同乘性):若 (a \equiv b \pmod p),则 ((a – c) \equiv (b – c) \pmod p)。

[\begin{align} 证:&\because a \equiv b \pmod p \ &\therefore p \mid a – b \ &\Rightarrow p \mid (a – b) \times c \ &\Rightarrow p \mid ac – bc \ &\therefore (a – c) \equiv (b – c) \pmod p \end{align}]

性质 7(同除性):若 (a \equiv b \pmod p),且 (c \mid a,\ c \mid b,\ (c, m) = 1),则 (\dfrac{a}{c} \equiv \dfrac{b}{c} \pmod p)。

[\begin{align} 证:&令\ a = k_1c,\ b = k_2c\ (k \in \mathbb{Z}) \ &\therefore \dfrac{a}{c} \equiv \dfrac{b}{c} \pmod p \Leftrightarrow k_1 \equiv k_2 \pmod p \ &\ \ \ \ \ m \mid (a – b) \Leftrightarrow m \mid (k_1 – k_2) \cdot c \ &又\because (c, m) = 1 \ &\therefore m \mid k_1 – k_2 \ &\therefore k_1 \equiv k_2 \pmod p \ &即\ \dfrac{a}{c} \equiv \dfrac{b}{c} \pmod p \end{align}]

性质 8(同幂性):若 (a \equiv b \pmod p),(c \gt 0),则 (a^c \equiv b^c \pmod p)。

析:多次「性质 6」可证,不重复赘述。

性质 9:若 (a \equiv b \pmod p),(c \equiv d \pmod p),则 ((a + c) \equiv (b + d) \pmod p)。

[\begin{align} 证:&\because a \equiv b \pmod p,\ c \equiv d \pmod p \ &\therefore m \mid a – b,\ m \mid c – d \ &\therefore m \mid a – b + c – d \ &\therefore m \mid (a + c) – (b + d) \end{align}]

性质 10:若 (a \equiv b \pmod p),(c \equiv d \pmod p),则 (ac \equiv bd \pmod p)。

[\begin{align} 证:&\because a \equiv b \pmod p,\ c \equiv d \pmod p \ &\therefore m \mid a – b,\ m \mid c – d \ &\therefore m \mid (a – b) \cdot c,\ m \mid (c – d) \cdot b \ &\therefore m \mid ac – bc + bc – bd \ &\Leftrightarrow m \mid ac – bd \ &\therefore ac \equiv bd \pmod m \end{align}]

性质 11:若 (a \equiv x \pmod p),(a \equiv x \pmod q) 且 ((p, q) = 1),则 (a \equiv x \pmod {pq})。

[\begin{align} 证:&\because a \equiv x \pmod p,\ a \equiv x \pmod q \ &\therefore p \mid (a – x),\ q \mid (a – x) \ &\therefore (a – x)\ 是\ p,q\ 的公倍数 \ &\therefore (a – x)=p^{k_1}q^{k_2}\ (1 \le k,k \in \mathbb{Z}) \ &\therefore pq \mid a – x \ &\therefore a \equiv x \pmod {pq} \end{align}]

关于『数论』:整除理论 填坑完毕(习题待补)。 (淋漓的诠释了什么是 “鸽王”)

(我 真 爱 数 学 呢)
(救命学数学真的会头秃)

填坑.ING🌚🌚🌚

更博弈论怕是要等到猴年马月了。。。

蒟蒻要励志学好数学!!1

Original: https://www.cnblogs.com/kylin-king/p/16650980.html
Author: 北柒kylin
Title: 关于『数论』:整除理论

原创文章受到原创版权保护。转载请注明出处:https://www.johngo689.com/588146/

转载文章受原作者版权保护。转载请注明原作者出处!

(0)

大家都在看

亲爱的 Coder【最近整理,可免费获取】👉 最新必读书单  | 👏 面试题下载  | 🌎 免费的AI知识星球