耗时几个月,终于找到了JVM停顿十几秒的原因

原创:打码日记(微信公众号ID:codelogs),欢迎分享,转载请保留出处。

简介

最近我们系统出现了一些奇怪的现象,系统每隔几个星期会在大半夜重启一次,分析过程花费了很长时间,令人印象深刻,故在此记录一下。

第一次排查

由于重启后,进程现场信息都丢失了,所以这个问题非常难以排查,像常规的jstack、jmap、arthas等都派不上用场,能用得上的只有机器监控数据与日志。

在看机器监控时,发现重启时间点的CPU、磁盘io使用都会升高,但很快我们就确认了这个信息无任何帮助,因为jvm启动会由于类加载、GIT编译等导致CPU、磁盘io升高,所以这个升高是重启本身导致的,并不是导致问题的原因。

然后就是分析业务日志、内核日志,经过一段时间分析,结论如下:

  1. 在重启的时间点,系统流量并没有明显上升。
  2. 在dmesg日志中并没有找到oom-killer的痕迹,虽然这经常是导致进程莫名重启的原因。
  3. 由于部署平台也可能会kill掉进程(当进程不响应健康检查请求时),我们也怀疑是它们的误杀,但运维同学认为不可能误杀。

问题没有任何进一步的进展了,由于没有任何进程现场,为了排查问题,我开发了一个脚本,主要逻辑就是监控CPU、内存使用率,达到一个阈值后自动收集jstack、jmap信息,脚本部署之后就没继续排查了。

第二次排查

部署了脚本之后,过了几个小时,进程又重启了,但这次不是在大半夜,而是白天,又开始了排查的过程…

在这次排查过程中,我突然发现之前漏掉了对gc日志的检查,我赶紧打开gc日志看了起来,发现了下面这种输出:

Heap after GC invocations=15036 (full 0):
 garbage-first heap   total 10485760K, used 1457203K [0x0000000540800000, 0x0000000540c05000, 0x00000007c0800000)
  region size 4096K, 9 young (36864K), 9 survivors (36864K)
 Metaspace       used 185408K, capacity 211096K, committed 214016K, reserved 1236992K
  class space    used 21493K, capacity 25808K, committed 26368K, reserved 1048576K
}
 [Times: user=0.15 sys=0.04, real=0.06 secs]
2021-03-06T09:49:25.564+0800: 914773.820: Total time for which application threads were stopped: 0.0585911 seconds, Stopping threads took: 0.0001795 seconds
2021-03-06T09:49:25.564+0800: 914773.820: [GC concurrent-string-deduplication, 7304.0B->3080.0B(4224.0B), avg 52.0%, 0.0000975 secs]
2021-03-06T09:50:31.544+0800: 914839.800: Total time for which application threads were stopped: 18.9777012 seconds, Stopping threads took: 18.9721235 seconds

啥,这代表什么意思,jvm暂停了18秒?但看上面那次gc只花了0.06秒呀!

不知道 application threads were stopped: 18.9777012 seconds这个日志的具体含义,只好去网上搜索了,结论如下:

  1. 这行日志确实代表了jvm暂停了18秒,即常说的STW。
  2. 之所以会有这行日志,是因为有 -XX:+PrintGCApplicationStoppedTime -XX:+PrintGCDetails这两个jvm参数。
  3. 这个18秒并不是由gc造成的,在jvm中除了gc,还有safepoint机制会让jvm进入STW,比如jstack、jmap等操作就会触发safepoint机制,使得所有线程进入safepoint等待操作完成。
  4. 一般来说,如果是gc造成的STW,会在上面有 [Times: user=0.15 sys=0.04, real=0.06 secs]这样一行,所以你看上面那个gc造成的STW实际是0.0585911秒,四舍五入成了0.06秒。

什么是safepoint机制

简单来说,就是JVM在做某些特殊操作时,必须要所有线程都暂停起来,所以设计了safepoint这个机制,当JVM做这些特殊操作时(如Full GC、jstack、jmap等),会让所有线程都进入安全点阻塞住,待这些操作执行完成后,线程才可恢复运行。
并且,jvm会在如下位置埋下safepoint,这是线程有机会停下来的地方:

  1. 方法调用返回处会埋safepoint
  2. 非counted loop(非有界循环),即 while(true)死循环这种,每次循环回跳之前会埋safepoint
  3. 有界循环,如循环变量是long类型,有safepoint,循环变量是int类型,需要添加 -XX:+UseCountedLoopSafepoints才有safepoint

经过一段时间的排查与思考,确认了这次STW是我自己开发的脚本导致的!因为随着jvm运行时间越来越长,老年代使用率会越来越高,但会在Full GC后降下来,而我的脚本直接检测老年代占用大于90%就jmap,导致触发了jvm的safepoint机制使所有线程需等待jmap完成,导致进程不响应请求,进而部署平台kill了进程。

其实脚本监控逻辑应该是在Full GC后,发现内存占用还是很高,才算内存异常case。

在了解到safepoint这个知识点后,在网上搜索了大量文章,主要提到了5组jvm参数,如下:

打开safepoint日志,日志会输出到jvm进程的标准输出里
-XX:+PrintSafepointStatistics -XX:PrintSafepointStatisticsCount=1
当有线程进入Safepoint超过2000毫秒时,会认为进入Safepoint超时了,这时会打印哪些线程没有进入Safepoint
-XX:+SafepointTimeout -XX:SafepointTimeoutDelay=2000
没有这个选项,JIT编译器可能会优化掉for循环处的safepoint,那么直到循环结束线程才能进入safepoint,而加了这个参数后,每次for循环都能进入safepoint了,建议加上此选项
-XX:+UseCountedLoopSafepoints
在高并发应用中,偏向锁并不能带来性能提升,反而会触发很多没必要的Safepoint,建议加上此选项关闭偏向锁
-XX:-UseBiasedLocking
避免jvm定时进入safepoint,就如safepoint中的no vm operation操作就是jvm定时触发的safepoint
-XX:+UnlockDiagnosticVMOptions -XX:GuaranteedSafepointInterval=0

注:默认情况下,jvm将safepoint日志加到标准输出流里,由于我们使用的resin服务器,它有watchdog机制,导致safepoint日志写到了watchdog进程的 ${RESIN_HOME}/log/jvm-app-0.log中。

并且我发现网上有很多关于 -XX:+UseCountedLoopSafepoints-XX:-UseBiasedLocking导致长时间STW的问题案例,我当时几乎都觉得我加上这2个参数后,问题就解决了。

于是我并没有进一步去优化监控脚本,而是下掉了它,直接加上了这些jvm参数。

safepoint日志格式

加入以上jvm参数后,立即查看safepoint日志,格式如下:

$ less jvm-app-0.log
         vmop                    [threads: total initially_running wait_to_block]    [time: spin block sync cleanup vmop] page_trap_count
24.692: ForceSafepoint                   [      77          0              1    ]      [     0     0     0     0     0    ]  0
         vmop                    [threads: total initially_running wait_to_block]    [time: spin block sync cleanup vmop] page_trap_count
25.607: G1IncCollectionPause             [      77          0              0    ]      [     0     0     0     0   418    ]  0
         vmop                    [threads: total initially_running wait_to_block]    [time: spin block sync cleanup vmop] page_trap_count
26.947: Deoptimize                       [      77          0              0    ]      [     0     0     0     0     1    ]  0
         vmop                    [threads: total initially_running wait_to_block]    [time: spin block sync cleanup vmop] page_trap_count
27.136: ForceSafepoint                   [      77          0              1    ]      [     0     0     0     0     0    ]  0
         vmop                    [threads: total initially_running wait_to_block]    [time: spin block sync cleanup vmop] page_trap_count
28.137: no vm operation                  [      77          0              1    ]      [     0     0     0     0     0    ]  0

其中:

  • 第一列是当前打印日志时间点,它是相对于进程启动后经过的秒数。
  • 第二列是触发safepoint机制的操作,比如G1IncCollectionPause,看名称就知道是G1GC操作导致的暂停。
  • 第三列是当前jvm线程情况
    total:STW发生时,当前jvm的线程数量
    initially_running :STW发生时,仍在运行的线程数,这项是Spin阶段的时间来源
    wait_to_block : STW需要阻塞的线程数目,这项是block阶段的时间来源
  • 第四列是safepoint各阶段的耗时
    Spin:因为jvm在决定进入全局safepoint的时候,有的线程在安全点上,而有的线程不在安全点上,这个阶段是等待未在安全点上的线程进入安全点的时间。
    Block:即使进入safepoint,后进入safepoint的部分线程可能仍然是running状态,这是等待它们阻塞起来花费的时间。
    Sync:等于Spin + Block + 其它活动耗时,gc的STW日志最后的 Stopping threads took等于Spin + Block。
    Cleanup:这个阶段是JVM做的一些内部的清理工作。
    vmop:实际safepoint操作花费的时间,如G1IncCollectionPause(GC暂停),Deoptimize(代码反优化),RevokeBias(偏向锁撤销),PrintThreads(jstack),GC_HeapInspection(jmap -histo),HeapDumper(jmap -dump)。

第三次排查

过了几个星期后,问题又出现了,接下来就是检查gc与safepoint日志了,一看日志发现,果然有很长时间的STW,且不是gc造成的,如下:

  1. 首先查看gc日志,发现有超过16s的STW,并且不是gc造成的,如下:
发现有16s的STW
$ less gc-*.log
Heap after GC invocations=1 (full 0):
 garbage-first heap   total 10485760K, used 21971K [0x0000000540800000, 0x0000000540c05000, 0x00000007c0800000)
  region size 4096K, 6 young (24576K), 6 survivors (24576K)
 Metaspace       used 25664K, capacity 26034K, committed 26496K, reserved 1073152K
  class space    used 3506K, capacity 3651K, committed 3712K, reserved 1048576K
}
 [Times: user=0.13 sys=0.02, real=0.04 secs]
2021-04-02T00:00:00.192+0800: 384896.192: Total time for which application threads were stopped: 0.0423070 seconds, Stopping threads took: 0.0000684 seconds
2021-04-02T00:00:00.193+0800: 384896.193: Total time for which application threads were stopped: 0.0006532 seconds, Stopping threads took: 0.0000582 seconds
2021-04-02T00:00:00.193+0800: 384896.193: Total time for which application threads were stopped: 0.0007572 seconds, Stopping threads took: 0.0000582 seconds
2021-04-02T00:00:00.194+0800: 384896.194: Total time for which application threads were stopped: 0.0006226 seconds, Stopping threads took: 0.0000665 seconds
2021-04-02T00:00:00.318+0800: 384896.318: Total time for which application threads were stopped: 0.1240032 seconds, Stopping threads took: 0.0000535 seconds
2021-04-02T00:00:00.442+0800: 384896.442: Total time for which application threads were stopped: 0.1240013 seconds, Stopping threads took: 0.0007532 seconds
2021-04-02T00:00:16.544+0800: 384912.544: Total time for which application threads were stopped: 16.1020012 seconds, Stopping threads took: 0.0000465 seconds
2021-04-02T13:04:48.545+0800: 384912.545: Total time for which application threads were stopped: 0.0007232 seconds, Stopping threads took: 0.0000462 seconds
  1. 再查看safepoint日志,发现有16s的safepoint操作,触发事件是HeapWalkOperation,如下:
safepoint日志也发现16s的HeapWalkOperation操作
$ less jvm-app-0.log
         vmop                    [threads: total initially_running wait_to_block]    [time: spin block sync cleanup vmop] page_trap_count
384896.193: FindDeadlocks                    [      96          0              0    ]      [     0     0     0     0     0    ]  0
         vmop                    [threads: total initially_running wait_to_block]    [time: spin block sync cleanup vmop] page_trap_count
384896.193: ForceSafepoint                   [      98          0              0    ]      [     0     0     0     0     0    ]  0
         vmop                    [threads: total initially_running wait_to_block]    [time: spin block sync cleanup vmop] page_trap_count
384896.194: ThreadDump                       [      98          0              0    ]      [     0     0     0     0    124    ]  0
         vmop                    [threads: total initially_running wait_to_block]    [time: spin block sync cleanup vmop] page_trap_count
384896.318: ThreadDump                       [      98          0              0    ]      [     0     0     0     0    124    ]  0
         vmop                    [threads: total initially_running wait_to_block]    [time: spin block sync cleanup vmop] page_trap_count
384896.442: HeapWalkOperation                [      98          0              0    ]      [     0     0     0     0   16102    ]  0
         vmop                    [threads: total initially_running wait_to_block]    [time: spin block sync cleanup vmop] page_trap_count
384912.545: no vm operation                  [      98          0              0    ]      [     0     0     0     0     0    ]  0
  1. 对比两个日志的时间点,发现时间点是吻合的,如下:
查看进程启动时间点
$ ps h -o lstart -C java|xargs -i date -d '{}' +'%F %T'
2021-03-28 13:05:03  # watchdog进程
2021-03-28 13:05:04  # 这个才是服务进程

由于safepoint记录的时间点是相对于进程启动的秒数,而HeapWalkOperation对应的秒数是384896.442
用date给时间加上秒数,减的话用 xx seconds ago
$ date -d '2021-03-28 13:05:04 384896 seconds'  +'%F %T'
2021-04-02 00:00:00

可以发现gc日志中STW是 2021-04-02T00:00:16,而safepoint中是 2021-04-02 00:00:00,刚好差了16s,时间差值刚好等于STW时间,这是由于gc日志记录的是STW发生之后的时间,而safepoint日志记录的是STW发生之前的时间,所以这两个日志时间点是吻合的,16s的STW正是由HeapWalkOperation导致的。

从名称看起来像是在执行堆内存遍历操作,类似jmap那种,但我的脚本已经下掉了呀,不可能还有jmap操作呀,机器上除了我的resin服务器进程,也没有其它的进程了呀!

到这里,已经找到了一部分原因,但不知道是怎么造成的,苦苦寻找根因中…

第N次排查

已经记不得是第几次排查了,反正问题又出现了好几次,但这次咱把根因给找到了,过程如下:

  1. 还是如上面过程一样,检查gc日志、safepoint日志,如下:
gc日志中发现14s的STW
$ less gc-*.log
2021-05-16T00:00:14.634+0800: 324412.634: Total time for which application threads were stopped: 14.1570012 seconds, Stopping threads took: 0.0000672 seconds

safepoint日志中同样有14s的HeapWalkOperation操作
$ less jvm-app-0.log
         vmop                    [threads: total initially_running wait_to_block]    [time: spin block sync cleanup vmop] page_trap_count
324398.477: HeapWalkOperation                [      98          0              0    ]      [     0     0     0     0   14157    ]  0

现象和之前一模一样,现在的关键还是不知道HeapWalkOperation是由什么原因导致的。

  1. 源于最近一直在学习Linux命令,并且正在总结grep的用法,我随手在resin目录递归的grep了一下heap这个词,如下:
-i 忽略大小写搜索
-r 递归的搜索,在当前目录/子目录/子子目录的所有文件中搜索heap
-n 打印出匹配行的行号
$ grep -irn heap

耗时几个月,终于找到了JVM停顿十几秒的原因
我竟意外发现,resin中有HeapDump相关的配置,好像是resin中的一些健康检查的机制。

经过一翻resin官网的学习,确认了resin有各种健康检查机制,比如,每个星期的0点,会生成一份pdf报告,这个报告的数据就来源于类似jstack、jmap这样的操作,只是它是通过调用jdk的某些方法实现的。
resin健康检查机制的介绍:http://www.caucho.com/resin-4.0/admin/health-checking.xtp


    ${resin.root}/doc/admin/pdf-gen.php
    Summary
    7D

    ${email}
    ${email_from}

此机制会在${RESIN_HOME}/log目录下生成pdf报告,如下:

$ ls -l
-rw-r--r-- 1 work work 2539860 2021-05-02 00:00:26 app-0-Summary-20210502T0000.pdf
-rw-rw-r-- 1 work work 3383712 2021-05-09 00:00:11 app-0-Summary-20210509T0000.pdf
-rw-rw-r-- 1 work work 1814296 2021-05-16 00:00:16 app-0-Summary-20210516T0000.pdf

由于堆遍历这样的操作,耗时时间完全和当时jvm的内存占用情况有关,内存占用高遍历时间长,占用低则遍历时间短,因此有时暂停时间会触发部署平台kill进程的时间阈值,有时又不会,所以我们的重启现象也不是每周的0点,使得没有注意到0点的这个时间规律。

于是我直接找到resin的health.xml,将健康检查相关机制全关闭了,如下:


    false
    1m

    false
    1m

    false
    95

    false

这样配置以后,过了2个月,再也没出现重启现象了,确认了问题已解决。

总结

这次问题排查有一定的思路,但最后排查出根因的契机,还是有点像撞大运似的,自己随机grep了一把发现线索,但下次就不知道会不会碰到这种运气了。

后面想了想,这种问题常规的排查思路还是要挂脚本,运行追踪程序perf、bpftrace等,在jvm执行safepoint操作的入口函数加入探针probe,当发现safepoint操作时间超长时,打印出相关jvm原生调用栈与java调用栈即可,关于追踪工具,之前有过这方面的介绍,感兴趣可以看下:
Linux命令拾遗-动态追踪工具
Linux命令拾遗-剖析工具

往期内容

字符编码解惑
hex,base64,urlencode编码方案对比
mysql的timestamp会存在时区问题?
真正理解可重复读事务隔离级别
不容易自己琢磨出来的正则表达式用法

Original: https://www.cnblogs.com/codelogs/p/16060792.html
Author: 扣钉日记
Title: 耗时几个月,终于找到了JVM停顿十几秒的原因

原创文章受到原创版权保护。转载请注明出处:https://www.johngo689.com/581377/

转载文章受原作者版权保护。转载请注明原作者出处!

(0)

大家都在看

  • Day4

    package operator;import java.util.Date;//三元运算符public class Demo8 { public static void main…

    Java 2023年6月5日
    066
  • 单元测试、反射、注解、动态代理

    单元测试JUnit 单元测试的目的是针对方法进行测试, JUnit的两个要点:①必须是公开的,无参数,无返回值的方法 ②测试方法必须使用@Test注解标记 public class…

    Java 2023年6月9日
    063
  • 120_入门案例-Work模式-公平分发(Fair Dispatch)

    Work模式公平分发(Fair Dispatch) 生产者 消费者-Work1 消费者-Work2 小结 总结 Work模式公平分发(Fair Dispatch) :::info参…

    Java 2023年6月7日
    083
  • MyBatisPlus实现分页和查询操作就这么简单

    《SpringBoot整合MybatisPlus基本的增删改查,保姆级教程》在这篇文章中,我们详细介绍了分页的具体实现方法。但是,在日常的开发中还需要搜索功能的。下面让我们一起动起…

    Java 2023年6月8日
    073
  • 为什么java里面经常作List判断的时候,既要判断list不为null,又要判断size>0呢?

    没有考虑到具体的问题上面,我们单纯的来讲: 为什么java里面经常作List判断的时候,既要判断list不为null,又要判断size>0呢? list == null 说明…

    Java 2023年5月29日
    068
  • Git常用命令

    1.仓库 2.配置 3.增加/删除文件 4.代码提交 5.分支 6.标签 7.查看信息 8.远程同步 9.撤销 10.其他 1.仓库 将当前目录初始化为Git代码库 $ git i…

    Java 2023年6月8日
    077
  • 30个类手写Spring核心原理之AOP代码织入(5)

    本文节选自《Spring 5核心原理》 前面我们已经完成了Spring IoC、DI、MVC三大核心模块的功能,并保证了功能可用。接下来要完成Spring的另一个核心模块—AOP,…

    Java 2023年6月7日
    071
  • Java高并发27-ThreadPoolExecutor原理剖析(1)

    类图 线程池的好处: (1)性能好;(2)工厂方法便捷创建线程,个数自定义指定 类图描述 Excutors其实是一个工具类,ThreadPoolExecutor继承了Abstrac…

    Java 2023年6月13日
    079
  • leetcode 104. Maximum Depth of Binary Tree 二叉树的最大深度(简单)

    给定一个二叉树,找出其最大深度。 二叉树的深度为根节点到最远叶子节点的最长路径上的节点数。 说明: 叶子节点是指没有子节点的节点。 示例:给定二叉树 [3,9,20,null,nu…

    Java 2023年6月13日
    088
  • dubbo源码分析5(dubbo服务暴露入口)

    经过了前面这么多的铺垫,没错,前面说了这么一大堆的都是铺垫,我们说了spi,以及基于spring的扩展,这一篇就开始说说dubbo吧! 1.dubbo的配置文件解析 在第一篇的时候…

    Java 2023年6月6日
    085
  • Java8新特性-Stream API

    Java8中有两大最为重要的改变。第一个是 Lambda 表达式;另外一 个则是 Stream API(java.util.stream.*)。 Stream 是 Java8 中处…

    Java 2023年6月8日
    067
  • 面试题:Java中为什么只有值传递?

    作者:小牛呼噜噜 | https://xiaoniuhululu.com计算机内功、JAVA底层、面试相关资料等更多精彩文章在公众号「小牛呼噜噜 」 经典的问题 形参&实参…

    Java 2023年6月15日
    085
  • 090_入门案例-Direct 路由模式

    RabbitMQ的模式之Direct模式 生产者 消费者 RabbitMQ的模式之Direct模式 :::info参考官网:https://www.rabbitmq.com/get…

    Java 2023年6月7日
    066
  • ClickHouse性能优化?试试物化视图

    一、前言 ClickHouse是一个用于联机分析(OLAP)的列式数据库管理系统(DBMS);目前我们使用CH作为实时数仓用于统计分析,在做性能优化的时候使用了 &#x72…

    Java 2023年6月6日
    094
  • JVM学习笔记之类加载机制【八】

    一、类加载时机 1.1 触发类初始化的六个场景: 加载? 1、遇到new、getstatic、putstatic或invokestatic这四条字节码指令时 如果类型没有进行过初始…

    Java 2023年6月5日
    072
  • Lambda表达式

    jdk8更新了一个新特性,Lambda表达式,它采用了一种简洁的语法定义代码块,取代了大部分的匿名内部类,主要用内部类完成实现接口。 这里给出一系列接口,供上下文操作 public…

    Java 2023年6月5日
    085
亲爱的 Coder【最近整理,可免费获取】👉 最新必读书单  | 👏 面试题下载  | 🌎 免费的AI知识星球