[Elasticsearch] ES 的Mapping 设计在实际场景中应用

项目中的一个要求是需要几个字段作为标记,以统计每个标记中的文档数,并支持分词后的全文检索。

[En]

A requirement in the project is to need several fields as tags to count the number of documents in each tag and to support full-text retrieval after word segmentation.

所使用的ES版本: elasticsearch-5.6.16

原有的mapping设计:

curl -XPUT http://ip:9200/meta_es_metric_data -d'

{
  "settings": {
    "number_of_shards": 5,
    "number_of_replicas": 0
  },
  "mappings": {
    "meta_metric": {
      "properties": {
        "metricCode": {
          "type": "text",
           "analyzer" : "ik_max_word"
        },
        "metricTechType": {
          "type": "keyword"
        },
        "dataDomainName": {
          "type": "keyword"
        },
        "sceneClassify": {
          "type": "keyword"
        },
        "metricClassify": {
          "type": "keyword"
        }
      }
    }
  }
}'

其中keyword类型就是作为标签统计字段,因为其类型不支持分词检索,检索时必须精确查找,我们尝试把其类型修改成text,text本身就是支持分词索引,但是修改后就报错了:

Fielddata is disabled on text fields by default

经过查询了解es一个字段类型被设置为text,再进行聚合统计,就会报上面的问题.

那么ES有没有办法对一个字段支持分词检索同时可以进行统计的特性呢?其实就是ES是否可以一个字段定义两种类型: keyword 和 text?

答案是可以的.

ES字段的fields属性

通过fields属性来让当前字段同时具备keyword和text类型

由于我们本身的字段类型是keyword,那我在field 属性中添加一个text,是否就满足需求呢?如:

curl -XPUT http://ip:9200/meta_es_metric_data -d'

{
  "settings": {
    "number_of_shards": 5,
    "number_of_replicas": 0
  },
  "mappings": {
    "meta_metric": {
      "properties": {
        "metricCode": {
          "type": "text",
           "analyzer" : "ik_max_word"
        },
        "metricTechType": {
          "type": "keyword"
          "fields": {
                "raw": {
                   "type":  "text"
             }
          }
        }
      }
    }
  }
}'

当用match 搜索metricTechType.raw, 分词搜索是不行的。

之所以想这样做是因为 ES支持新增字段、更新字段,但是不支持字段类型的修改

这条方法走不通,就比较复杂了,因为考虑修改字段类型,我们只能重建mapping, 同时涉及历史数据的加载处理。

具体步骤

curl -XPUT http://ip:9200/meta_es_metric_data_new -d'

{
  "settings": {
    "number_of_shards": 5,
    "number_of_replicas": 0
  },
  "mappings": {
    "meta_metric": {
      "properties": {
        "metricCode": {
          "type": "text",
           "analyzer" : "ik_max_word"
        },

        "metricTechType": {
          "type": "text",
           "fields": {
                    "raw": {
                      "type":  "keyword"
             }
          }
        },

        "dataDomainName": {
          "type": "text",
           "fields": {
                    "raw": {
                   "type":  "keyword"
             }
          }
        },

        "sceneClassify": {
          "type": "text",
          "fields": {
                    "raw": {
                   "type":  "keyword"
             }
          }
        },

        "metricClassify": {
          "type": "text",
          "fields": {
                    "raw": {
                    "type":  "keyword"
             }
          }
        }
      }
    }
  }
}'
curl -XGET  'http://ip:9200/meta_es_metric_data_new/_mapping'
curl -XPOST http://ip:9200/_reindex -d'
{
    "source":{
       "index": "meta_es_metric_data"
    },

    "dest": {
        "index": "meta_es_metric_data_new"
    }

}'

curl -XGET 'http://ip:9200/meta_es_metric_data/_search?pretty' -H 'Content-Type: application/json' -d'
{
  "query": {
    "match": {
      "dataDomainName": "用户"
    }
  }
}
'
curl -XDELETE http://ip:9200/meta_es_metric_data

curl -XPOST http://ip:9200/_aliases -d'
{
    "actions":[
        {
           "add": {
                "index": "meta_es_metric_data_new",
                "alias": "meta_es_metric_data"
           }

        }
    ]

}'
curl -XGET 'http://ip:9200/meta_es_metric_data_new/_search?pretty' -H 'Content-Type: application/json' -d'
{
  "query": {
    "match": {
      "dataDomainName": "用户"
    }
  },
  "sort": {
    "dataDomainName.raw": "asc"
  },
  "aggs": {
    "Cities": {
      "terms": {
        "field": "dataDomainName.raw"
      }
    }
  }
}
'

本文主要讲解如何让一个字段支持不同方式索引,利用Fields属性. 同时如何对历史存量数据进行处理. keyword类型支持es精确查找以及聚合排序,text支持全文检索,但是不能进行聚合、排序.

Original: https://www.cnblogs.com/bigdata1024/p/15727435.html
Author: chaplinthink
Title: [Elasticsearch] ES 的Mapping 设计在实际场景中应用

原创文章受到原创版权保护。转载请注明出处:https://www.johngo689.com/522635/

转载文章受原作者版权保护。转载请注明原作者出处!

(0)

大家都在看

亲爱的 Coder【最近整理,可免费获取】👉 最新必读书单  | 👏 面试题下载  | 🌎 免费的AI知识星球