波士顿房价预测(TensorFlow2.9实践)

波士顿房价预测(TensorFlow2.9实践)

波士顿房价数据集包括506个样本,每个样本包括12个特征变量和该地区的平均房价。房价(单价)显然和多个特征变量相关,不是单变量线性回归(一元线性回归)问题,选择多个特征变量来建立线性方程,这就是多变量线性回归(多元线性回归)问题。本文探讨了使用TensorFlow2.9+多元线性回归,解决波士顿房价预测问题。

使用TensorFlow进行算法设计与训练的核心步骤:

(1)准备数据

(2)构建模型

(3)训练模型

(4)进行预测

一、数据读取

波士顿房价预测(TensorFlow2.9实践)

数据集解读

波士顿房价预测(TensorFlow2.9实践)

读取数据

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
import pandas as pd
from sklearn.utils import shuffle
from sklearn.preprocessing import scale
print("Tensorflow版本是:",tf.__version__)

Tensorflow版本是: 2.9.1

通过pandas读取数据文件,列出统计概述:

df=pd.read_csv("boston.csv",header=0)
print(df.describe())

波士顿房价预测(TensorFlow2.9实践)

显示前3条数据:

df.head(3)

波士顿房价预测(TensorFlow2.9实践)

显示后3条数据:

df.tail(3)

波士顿房价预测(TensorFlow2.9实践)

二、数据准备


ds=df.values
print(ds.shape)

(506, 13)

查看数据集的值:

print(ds)

波士顿房价预测(TensorFlow2.9实践)

三、划分特征数据和标签数据


x_data = ds[:,:12]

y_data = ds[:,12]
print('x_data shape=',x_data.shape)
print('y_data shape=',y_data.shape)

x_data shape= (506, 12)
y_data shape= (506,)

四、特征数据归一化

考虑不同特征值取值范围大小的影响,需要对特征数据归一化。


for i in range(12):
    x_data[:,i]=(x_data[:,i]-x_data[:,i].min())/(x_data[:,i].max()-x_data[:,i].min())
x_data

波士顿房价预测(TensorFlow2.9实践)

五、数据集划分

构建和训练机器学习模型的目的是为新数据做出良好的预测。如何确保培训的有效性,处理前所未见的数据?让所有标记的数据都参加模型培训真的很好吗?

[En]

The purpose of building and training machine learning models is to make good predictions for new data. How to ensure the effectiveness of the training and deal with data that have never been seen before? Is it really good for all tagged data to participate in model training?

划分数据集的方法:

一种方法是将数据集分成两个子集:

  • 训练集 – 用于训练模型的子集
  • 测试集 – 用于测试模型的子集

一般来说,测试集上的良好性能是是否在新数据上表现良好的有用指标,前提是:

[En]

In general, good performance on test sets is a useful indicator of whether or not to perform well on new data, provided that:

测试集足够大,不会反复使用相同的测试集来作假。

拆分数据:

将单个数据集拆分为一个训练集和一个测试集

波士顿房价预测(TensorFlow2.9实践)

确保测试集满足以下两个条件:
(1)规模足够大,可产生具有统计意义的结果
(2)能代表整个数据集,测试集的特征应该与训练集的特征相同

工作流程:

波士顿房价预测(TensorFlow2.9实践)
问题思考:
使用测试集和训练集来推动模型开发迭代的流程。
在每次迭代中,对训练数据进行训练,对测试数据进行评估,并在基于测试数据的评估结果的指导下,选择和改变各种模型超参数,如学习率和特征。这种方法有问题吗?
[En]

In each iteration, the training data are trained and the test data are evaluated, and under the guidance of the evaluation results based on the test data, various model hyperparameters, such as learning rates and characteristics, are selected and changed. Is there a problem with this method?

问题在于,重复执行该过程可能会导致模型在不知不觉中符合特定测试集的特征。

[En]

The problem is that repeated execution of the process may cause the model to unwittingly fit the characteristics of a particular test set.

新的数据划分:

通过将数据集划分为三个子集,可以大幅降低过拟合的发生几率:

波士顿房价预测(TensorFlow2.9实践)
使用验证集评估训练集的效果。
在模型”通过”验证集之后,使用测试集再次检查评估结果。

新的工作流程:

波士顿房价预测(TensorFlow2.9实践)
划分训练集、验证集和测试集:
train_num = 300
valid_num = 100
test_num = len(x_data) - train_num - valid_num

x_train = x_data[:train_num]
y_train = y_data[:train_num]

x_valid = x_data[train_num:train_num+valid_num]
y_valid = y_data[train_num:train_num+valid_num]

x_test = x_data[train_num+valid_num:train_num+valid_num+test_num]
y_test = y_data[train_num+valid_num:train_num+valid_num+test_num]

六、转换数据类型

转换为tf.float32数据类型,后面求损失时要和变量W执行tf.matmul操作

x_train = tf.cast(x_train,dtype=tf.float32)
x_valid = tf.cast(x_valid,dtype=tf.float32)
x_test = tf.cast(x_test,dtype=tf.float32)

七、构建模型

def model(x,w,b):
    return tf.matmul(x,w)+b

八、创建待优化变量

W = tf.Variable(tf.random.normal([12,1],mean=0.0,stddev=1.0,dtype=tf.float32))
B= tf.Variable(tf.zeros(1),dtype = tf.float32)
print(W)
print(B)

波士顿房价预测(TensorFlow2.9实践)

九、模型训练

9.1 设置超参数

training_epochs = 50  #迭代次数
learning_rate = 0.001  #学习率
batch_size = 10  #批量训练一次的样本数

9.2 定义损失函数

#采用均方差作为损失函数

def loss(x,y,w,b):
    err = model(x, w,b) - y       #计算模型预测值和标签值的差异
    squared_err = tf.square(err)  #求平方,得出方差
    return tf.reduce_mean(squared_err) #求均值,得出均方差.

9.3 定义梯度函数

#计算样本数据[x,y]在参数[w, b]点上的梯度

def grad(x,y,w,b):
    with tf.GradientTape() as tape:
        loss_= loss(x,y,w,b)
    return tape.gradient(loss_,[w,b]) #返回梯度向量

9.4 选择优化器

optimizer = tf.keras.optimizers.SGD(learning_rate) #创建优化器,指定学习率

9.5 迭代训练

loss_list_train = []  #用于保存训练集1oss值的列表
loss_list_valid = []  #用于保存验证集loss值的列表
total_step = int(train_num/batch_size)

for epoch in range(training_epochs):
    for step in range(total_step):
        xs = x_train[step*batch_size:(step+1)*batch_size,:]
        ys = y_train[step*batch_size:(step+1)*batch_size]

        grads = grad(xs,ys,W,B)   #计算梯度
        optimizer.apply_gradients(zip(grads,[W,B])) #优化器根据梯度自动调整变量w和b

    loss_train = loss(x_train,y_train,W,B).numpy()   #计算当前轮训练损失
    loss_valid = loss(x_valid,y_valid,W,B).numpy()   #计算当前轮验证损失
    loss_list_train.append(loss_train)
    loss_list_valid.append(loss_valid)
    print("epoch={:3d},train_loss={:.4f},valid_loss={:.4f}".format(epoch+1,loss_train,loss_valid))

epoch= 1,train_loss=587.1567,valid_loss=414.5585
epoch= 2,train_loss=461.1470,valid_loss=304.6138
epoch= 3,train_loss=366.7652,valid_loss=227.8302
epoch= 4,train_loss=296.0490,valid_loss=175.0670
epoch= 5,train_loss=243.0432,valid_loss=139.5983
epoch= 6,train_loss=203.2935,valid_loss=116.4885
epoch= 7,train_loss=173.4678,valid_loss=102.1276
epoch= 8,train_loss=151.0732,valid_loss=93.8853
epoch= 9,train_loss=134.2448,valid_loss=89.8543
epoch= 10,train_loss=121.5869,valid_loss=88.6597
epoch= 11,train_loss=112.0550,valid_loss=89.3172
epoch= 12,train_loss=104.8675,valid_loss=91.1287
epoch= 13,train_loss=99.4389,valid_loss=93.6048
epoch= 14,train_loss=95.3310,valid_loss=96.4073
epoch= 15,train_loss=92.2155,valid_loss=99.3077
epoch= 16,train_loss=89.8464,valid_loss=102.1555
epoch= 17,train_loss=88.0393,valid_loss=104.8561
epoch= 18,train_loss=86.6560,valid_loss=107.3541
epoch= 19,train_loss=85.5927,valid_loss=109.6212
epoch= 20,train_loss=84.7715,valid_loss=111.6475
epoch= 21,train_loss=84.1340,valid_loss=113.4355
epoch= 22,train_loss=83.6362,valid_loss=114.9954
epoch= 23,train_loss=83.2449,valid_loss=116.3418
epoch= 24,train_loss=82.9353,valid_loss=117.4922
epoch= 25,train_loss=82.6886,valid_loss=118.4646
epoch= 26,train_loss=82.4904,valid_loss=119.2775
epoch= 27,train_loss=82.3301,valid_loss=119.9482
epoch= 28,train_loss=82.1996,valid_loss=120.4934
epoch= 29,train_loss=82.0925,valid_loss=120.9283
epoch= 30,train_loss=82.0043,valid_loss=121.2668
epoch= 31,train_loss=81.9312,valid_loss=121.5214
epoch= 32,train_loss=81.8704,valid_loss=121.7035
epoch= 33,train_loss=81.8199,valid_loss=121.8229
epoch= 34,train_loss=81.7781,valid_loss=121.8884
epoch= 35,train_loss=81.7434,valid_loss=121.9079
epoch= 36,train_loss=81.7151,valid_loss=121.8881
epoch= 37,train_loss=81.6921,valid_loss=121.8350
epoch= 38,train_loss=81.6740,valid_loss=121.7537
epoch= 39,train_loss=81.6602,valid_loss=121.6488
epoch= 40,train_loss=81.6503,valid_loss=121.5241
epoch= 41,train_loss=81.6439,valid_loss=121.3830
epoch= 42,train_loss=81.6407,valid_loss=121.2285
epoch= 43,train_loss=81.6406,valid_loss=121.0630
epoch= 44,train_loss=81.6432,valid_loss=120.8886
epoch= 45,train_loss=81.6484,valid_loss=120.7074
epoch= 46,train_loss=81.6561,valid_loss=120.5208
epoch= 47,train_loss=81.6661,valid_loss=120.3301
epoch= 48,train_loss=81.6783,valid_loss=120.1367
epoch= 49,train_loss=81.6926,valid_loss=119.9414
epoch= 50,train_loss=81.7088,valid_loss=119.7451

十、可视化损失值


plt.xlabel("Epochs")
plt.ylabel("Loss")
plt.plot(loss_list_train,'blue',label="Train Loss")
plt.plot(loss_list_valid,'red',label="Valid Loss")
plt.legend(loc=1)

波士顿房价预测(TensorFlow2.9实践)

十一、查看测试集损失值

print("Test_loss:{:.4f}".format(loss(x_test,y_test,W,B).numpy()))

Test_loss:114.1834

十二、模型应用

测试集里随机选一条:

test_house_id = np.random.randint(0,test_num)
y = y_test[test_house_id]
y_pred = model(x_test,W,B)[test_house_id]
y_predit=tf.reshape(y_pred,()).numpy()
print("House id",test_house_id, "Actual value",y,"Predicted value ",y_predit)

House id 70 Actual value 19.9 Predicted value 25.09165

完整代码:

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt

%matplotlib inline
import pandas as pd
from sklearn.utils import shuffle
from sklearn.preprocessing import scale

def model(x,w,b):
    return tf.matmul(x,w)+b

def loss(x,y,w,b):
    err = model(x, w,b) - y
    squared_err = tf.square(err)
    return tf.reduce_mean(squared_err)

def grad(x,y,w,b):
    with tf.GradientTape() as tape:
        loss_= loss(x,y,w,b)
    return tape.gradient(loss_,[w,b])

ds=df.values

x_data = ds[:,:12]

y_data = ds[:,12]

for i in range(12):
    x_data[:,i]=(x_data[:,i]-x_data[:,i].min())/(x_data[:,i].max()-x_data[:,i].min())

train_num = 300
valid_num = 100
test_num = len(x_data) - train_num - valid_num

x_train = x_data[:train_num]
y_train = y_data[:train_num]

x_valid = x_data[train_num:train_num+valid_num]
y_valid = y_data[train_num:train_num+valid_num]

x_test = x_data[train_num+valid_num:train_num+valid_num+test_num]
y_test = y_data[train_num+valid_num:train_num+valid_num+test_num]

x_train = tf.cast(x_train,dtype=tf.float32)
x_valid = tf.cast(x_valid,dtype=tf.float32)
x_test = tf.cast(x_test,dtype=tf.float32)

W = tf.Variable(tf.random.normal([12,1],mean=0.0,stddev=1.0,dtype=tf.float32))
B= tf.Variable(tf.zeros(1),dtype = tf.float32)

training_epochs = 50
learning_rate = 0.001
batch_size = 10

optimizer = tf.keras.optimizers.SGD(learning_rate)

loss_list_train = []
loss_list_valid = []
total_step = int(train_num/batch_size)

for epoch in range(training_epochs):
    for step in range(total_step):
        xs = x_train[step*batch_size:(step+1)*batch_size,:]
        ys = y_train[step*batch_size:(step+1)*batch_size]

        grads = grad(xs,ys,W,B)
        optimizer.apply_gradients(zip(grads,[W,B]))

    loss_train = loss(x_train,y_train,W,B).numpy()
    loss_valid = loss(x_valid,y_valid,W,B).numpy()
    loss_list_train.append(loss_train)
    loss_list_valid.append(loss_valid)
    print("epoch={:3d},train_loss={:.4f},valid_loss={:.4f}".format(epoch+1,loss_train,loss_valid))

Original: https://blog.csdn.net/baidu/article/details/125272411
Author: 果州做题家
Title: 波士顿房价预测(TensorFlow2.9实践)

原创文章受到原创版权保护。转载请注明出处:https://www.johngo689.com/42894/

转载文章受原作者版权保护。转载请注明原作者出处!

(0)

大家都在看

最近整理资源【免费获取】:   👉 程序员最新必读书单  | 👏 互联网各方向面试题下载 | ✌️计算机核心资源汇总