基于Pytorch实现猫狗分类

  1. 导入相应的库

import torch.nn.functional as F
import torch.optim as optim
import torch
import torch.nn as nn
import torch.nn.parallel

import torch.optim
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transforms
import torchvision.datasets as datasets
  1. 设置超参数

BATCH_SIZE = 20

EPOCHS = 10

DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
  1. 图像处理与图像增强

transform = transforms.Compose([
    transforms.Resize(100),
    transforms.RandomVerticalFlip(),
    transforms.RandomCrop(50),
    transforms.RandomResizedCrop(150),
    transforms.ColorJitter(brightness=0.5, contrast=0.5, hue=0.5),
    transforms.ToTensor(),
    transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
])
  1. 读取数据集和导入数据

dataset_train = datasets.ImageFolder('E:\\Cat_And_Dog\\kaggle\\cats_and_dogs_small\\train', transform)

print(dataset_train.imgs)

print(dataset_train.class_to_idx)

dataset_test = datasets.ImageFolder('E:\\Cat_And_Dog\\kaggle\\cats_and_dogs_small\\validation', transform)

print(dataset_test.class_to_idx)

train_loader = torch.utils.data.DataLoader(dataset_train, batch_size=BATCH_SIZE, shuffle=True)

test_loader = torch.utils.data.DataLoader(dataset_test, batch_size=BATCH_SIZE, shuffle=True)
  1. 定义网络模型

class ConvNet(nn.Module):
    def __init__(self):
        super(ConvNet, self).__init__()
        self.conv1 = nn.Conv2d(3, 32, 3)
        self.max_pool1 = nn.MaxPool2d(2)
        self.conv2 = nn.Conv2d(32, 64, 3)
        self.max_pool2 = nn.MaxPool2d(2)
        self.conv3 = nn.Conv2d(64, 64, 3)
        self.conv4 = nn.Conv2d(64, 64, 3)
        self.max_pool3 = nn.MaxPool2d(2)
        self.conv5 = nn.Conv2d(64, 128, 3)
        self.conv6 = nn.Conv2d(128, 128, 3)
        self.max_pool4 = nn.MaxPool2d(2)
        self.fc1 = nn.Linear(4608, 512)
        self.fc2 = nn.Linear(512, 1)

    def forward(self, x):
        in_size = x.size(0)
        x = self.conv1(x)
        x = F.relu(x)
        x = self.max_pool1(x)
        x = self.conv2(x)
        x = F.relu(x)
        x = self.max_pool2(x)
        x = self.conv3(x)
        x = F.relu(x)
        x = self.conv4(x)
        x = F.relu(x)
        x = self.max_pool3(x)
        x = self.conv5(x)
        x = F.relu(x)
        x = self.conv6(x)
        x = F.relu(x)
        x = self.max_pool4(x)

        x = x.view(in_size, -1)
        x = self.fc1(x)
        x = F.relu(x)
        x = self.fc2(x)
        x = torch.sigmoid(x)
        return x

modellr = 1e-4

model = ConvNet().to(DEVICE)

optimizer = optim.Adam(model.parameters(), lr=modellr)
  1. 调整学习率
def adjust_learning_rate(optimizer, epoch):

    """Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
    modellrnew = modellr * (0.1 ** (epoch // 5))
    print("lr:",modellrnew)
    for param_group in optimizer.param_groups:
        param_group['lr'] = modellrnew
  1. 定义训练过程

def train(model, device, train_loader, optimizer, epoch):

    model.train()
    for batch_idx, (data, target) in enumerate(train_loader):

        data, target = data.to(device), target.to(device).float().unsqueeze(1)

        optimizer.zero_grad()

        output = model(data)

        loss = F.binary_cross_entropy(output, target)

        loss.backward()

        optimizer.step()

        if (batch_idx + 1) % 10 == 0:

            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(

                epoch, (batch_idx + 1) * len(data), len(train_loader.dataset),

                    100. * (batch_idx + 1) / len(train_loader), loss.item()))

def val(model, device, test_loader):

    model.eval()

    test_loss = 0

    correct = 0

    with torch.no_grad():

        for data, target in test_loader:

            data, target = data.to(device), target.to(device).float().unsqueeze(1)

            output = model(data)

            test_loss += F.binary_cross_entropy(output, target, reduction='mean').item()
            pred = torch.tensor([[1] if num[0] >= 0.5 else [0] for num in output]).to(device)
            correct += pred.eq(target.long()).sum().item()

        print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
            test_loss, correct, len(test_loader.dataset),
            100. * correct / len(test_loader.dataset)))
  1. 定义保存模型和训练

for epoch in range(1, EPOCHS + 1):

    adjust_learning_rate(optimizer, epoch)
    train(model, DEVICE, train_loader, optimizer, epoch)
    val(model, DEVICE, test_loader)

torch.save(model, 'E:\\Cat_And_Dog\\kaggle\\model.pth')

训练结果

基于Pytorch实现猫狗分类
  1. 准备预测的图片
  2. 进行测试
from __future__ import print_function, division
from PIL import Image

from torchvision import transforms
import torch.nn.functional as F

import torch
import torch.nn as nn
import torch.nn.parallel

class ConvNet(nn.Module):
    def __init__(self):
        super(ConvNet, self).__init__()
        self.conv1 = nn.Conv2d(3, 32, 3)
        self.max_pool1 = nn.MaxPool2d(2)
        self.conv2 = nn.Conv2d(32, 64, 3)
        self.max_pool2 = nn.MaxPool2d(2)
        self.conv3 = nn.Conv2d(64, 64, 3)
        self.conv4 = nn.Conv2d(64, 64, 3)
        self.max_pool3 = nn.MaxPool2d(2)
        self.conv5 = nn.Conv2d(64, 128, 3)
        self.conv6 = nn.Conv2d(128, 128, 3)
        self.max_pool4 = nn.MaxPool2d(2)
        self.fc1 = nn.Linear(4608, 512)
        self.fc2 = nn.Linear(512, 1)

    def forward(self, x):
        in_size = x.size(0)
        x = self.conv1(x)
        x = F.relu(x)
        x = self.max_pool1(x)
        x = self.conv2(x)
        x = F.relu(x)
        x = self.max_pool2(x)
        x = self.conv3(x)
        x = F.relu(x)
        x = self.conv4(x)
        x = F.relu(x)
        x = self.max_pool3(x)
        x = self.conv5(x)
        x = F.relu(x)
        x = self.conv6(x)
        x = F.relu(x)
        x = self.max_pool4(x)

        x = x.view(in_size, -1)
        x = self.fc1(x)
        x = F.relu(x)
        x = self.fc2(x)
        x = torch.sigmoid(x)
        return x

model_save_path = 'E:\\Cat_And_Dog\\kaggle\\model.pth'

transform_test = transforms.Compose([
    transforms.Resize(100),
    transforms.RandomVerticalFlip(),
    transforms.RandomCrop(50),
    transforms.RandomResizedCrop(150),
    transforms.ColorJitter(brightness=0.5, contrast=0.5, hue=0.5),
    transforms.ToTensor(),
    transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
])

class_names = ['cat', 'dog']

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

model = torch.load(model_save_path)
model.eval()

image_PIL = Image.open('E:\\Cat_And_Dog\\kaggle\\cats_and_dogs_small\\test\\cats\\cat.1500.jpg')

image_tensor = transform_test(image_PIL)

image_tensor.unsqueeze_(0)

image_tensor = image_tensor.to(device)

out = model(image_tensor)
pred = torch.tensor([[1] if num[0] >= 0.5 else [0] for num in out]).to(device)
print(class_names[pred])
  1. 预测结果
    基于Pytorch实现猫狗分类
    基于Pytorch实现猫狗分类
    从实际训练过程来看,总体准确率不高。经过测试发现,该模型只能识别猫,却误判了狗。
    [En]

    From the actual training process, the overall accuracy is not high. After testing, it is found that the model can only identify cats, but misjudge dogs.

Original: https://blog.csdn.net/qq_43279579/article/details/117606669
Author: HarrietLH
Title: 基于Pytorch实现猫狗分类



相关阅读

Title: cv2.getRotationMatrix2D()

前言

最近考虑在对数据集做一些额外的数据增强(主要是随机以任意角度进行旋转),在阅读别人的源码时发现了cv2.getRotationMatrix2D()这一函数,顿时觉得该函数确实有用,查阅相关资料后,得到相关的用法总结( 为了保证阅读观感不会涉及到太多原理的矩阵推导,仅为直观理解)。

正文

旋转矩阵(逆时针)为:
M = ( c o s ( θ ) − s i n ( θ ) s i n ( θ ) c o s ( θ ) ) M= \begin{pmatrix} cos(\theta) & -sin(\theta) \ sin(\theta) & cos(\theta) \end{pmatrix}M =(cos (θ)s in (θ)​−s in (θ)cos (θ)​)
而在opencv中,原点是默认在图片的左上角,单纯的对图片使用该旋转矩阵,只是让图片绕着左上角进行旋转,如下图所示(图示为顺时针旋转45度的效果)。
opencv的特点就是如此虽然图片的直观表现上是逆时针旋转,但是由于原点的位置关系,想要达到该效果需要顺时针旋转矩阵。

基于Pytorch实现猫狗分类
所以,我们需要的是能够让图片在任意一点进行旋转,又或者说在原点进行完旋转之后还需要进行相应的平移,将目标的中心点平移回原来的位置。所以我们真正需要的矩阵为:
M = ( c o s ( θ ) − s i n ( θ ) ( 1 − c o s ( θ ) ) × x c e n t e r + s i n ( θ ) × y c e n t e r s i n ( θ ) c o s ( θ ) − s i n ( θ ) × x c e n t e r + ( 1 − c o s ( θ ) ) × y c e n t e r ) M= \begin{pmatrix} cos(\theta) & -sin(\theta) & (1-cos(\theta))\times x_{center}+sin(\theta)\times y_{center}\ sin(\theta) & cos(\theta) & -sin(\theta)\times x_{center}+(1-cos(\theta))\times y_{center} \end{pmatrix}M =(cos (θ)s in (θ)​−s in (θ)cos (θ)​(1 −cos (θ))×x ce n t er ​+s in (θ)×y ce n t er ​−s in (θ)×x ce n t er ​+(1 −cos (θ))×y ce n t er ​​)
多出来的第三列分别为x和y轴上所需要平移的距离。
所以opencv提供 cv2.getRotationMatrix2D()就是方便我们进行上述矩阵的获取。
其经常被使用到的参数有三个:
  • 旋转中心
  • 旋转角度
  • 旋转后的缩放比例
    具体在程序中如何表现请看下述代码:
import cv2
import matplotlib.pyplot as plt

img = cv2.imread('1.png')
rows, cols = img.shape[:2]

M = cv2.getRotationMatrix2D((cols / 2, rows / 2), 45, 1)

res1 = cv2.warpAffine(img, M, (cols, rows))

plt.subplot(121)
plt.imshow(img)
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
plt.title('原图')
plt.axis(False)
plt.subplot(122)
plt.imshow(res1)
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
plt.title('绕中心点旋转的图像')
plt.axis(False)
plt.show()

基于Pytorch实现猫狗分类

拓展

虽然已经能够绕任意点旋转,但是图片并不能显示完全,所以还可以使用如下代码进行自适应调整图片大小。

import cv2
import matplotlib.pyplot as plt
import numpy as np

img = cv2.imread('1.png')
rows, cols = img.shape[:2]

M = cv2.getRotationMatrix2D((cols / 2, rows / 2), 45, 1)

cos = np.abs(M[0, 0])
sin = np.abs(M[0, 1])
new_w = rows * sin + cols * cos
new_h = rows * cos + cols * sin
M[0, 2] += (new_w - cols) * 0.5
M[1, 2] += (new_h - rows) * 0.5
w = int(np.round(new_w))
h = int(np.round(new_h))
res2 = cv2.warpAffine(img, M, (w, h))

plt.subplot(121)
plt.imshow(img)
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
plt.title('原图')
plt.axis(False)
plt.subplot(122)
plt.imshow(res2)
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
plt.title('绕中心点旋转的图像')
plt.axis(False)
plt.show()

基于Pytorch实现猫狗分类

[update]

多角度自适应展示
旋转60度

基于Pytorch实现猫狗分类
旋转30度
基于Pytorch实现猫狗分类
旋转150度
基于Pytorch实现猫狗分类

; 结束

如有错误,欢迎各位指正!!!

Original: https://blog.csdn.net/qq_44109682/article/details/117434461
Author: K . U . I
Title: cv2.getRotationMatrix2D()

原创文章受到原创版权保护。转载请注明出处:https://www.johngo689.com/262385/

转载文章受原作者版权保护。转载请注明原作者出处!

(0)

大家都在看

最近整理资源【免费获取】:   👉 程序员最新必读书单  | 👏 互联网各方向面试题下载 | ✌️计算机核心资源汇总